Адгезия лейкоцитов при воспалении

Адгезия лейкоцитов при воспалении thumbnail

Небольшое перемещение лейкоцитов из кровеносных сосудов в ткани – диапедез или так называемая эмиграция лейкоцитов – нормальное явление. Однако при воспалительных условиях этот процесс идет интенсивно и активно – лейкоциты используют в процессе эмиграции АТФ. И этот процесс уже выходит за пределы нормы.

Почему происходит эмиграция лейкоцитов

Основной фактор, вызывающий эмиграцию лейкоцитов, – положительная гемотаксия в очаге воспаления. Эмиграции способствует повышенная проницаемость сосудистой стенки, замедление кровообращения и экссудации.

Эмиграция лейкоцитов следует за экссудацией, она начинается при артериальной гиперемии, но достигает пика при венозной гиперемии и застое. Экссудация происходит в основном из капилляров и вен, тогда как эмиграция лейкоцитов происходит из капилляров, вен и мелких вен.

Венозный застой

Эндотелиальные клетки сосудов прикрепляются к непрерывной базальной мембране, состоящей из коллагеновых волокон и гомогенного вещества, богатого комплексами белковых полисахаридов. В нормальных условиях эндотелиальная поверхность покрыта тонким слоем фибринового вещества, примыкающего к фиксированному слою плазмы крови, который, в свою очередь, граничит с движущейся частью плазмы.

Как протекает эмиграция лейкоцитов в очаг воспаления

Эмиграцию лейкоцитов в очаг воспаления можно разделить на три периода: 

  • Адгезия лейкоцитов. Так называемое крайнее положение. Которая длится от нескольких минут до одного часа, 
  • Прохождение лейкоцитов через эндотелий сосудов – длится несколько минут.
  • Лейкоциты перемещаются к очагу воспаления и в тканях очага воспаления – длится много часов и даже дней.

Миграция лейкоцитов к месту повреждения

С адгезией лейкоцитов меняется расположение этих элементов на поверхности венозного эндотелия. В нормальных условиях лейкоциты не касаются слоя фибрина, но в случае воспаления структура фибринового цемента изменяется, и внутренняя поверхность сосуда выстлана чешуйчатым материалом, содержащим кислые мукополисахариды, мукопротеины и соляную кислоту. Нити фибрилл могут пересекать просвет даже мелких кровеносных сосудов. 

Когда скорость кровообращения снижается, эти нити захватывают белые кровяные тельца, и они контактируют с измененным слоем фибринового цемента. Прежде чем прикрепиться к эндотелию сосудов, лейкоциты часто совершают очень сложные траектории движения – даже против кровотока. 

Считается, что адгезия лейкоцитов к эндотелию определяется электрохимическими силами – потерей отрицательного заряда лейкоцитов и специфических химических связей между мембранами контактирующих клеток. 

После адгезии к эндотелию сосудов нейтрофил развивает цитоплазматическое расширение, которое проникает между эндотелиальными клетками и образует отверстие в базальной мембране. Важную роль в изменении молекулярной структуры базальной мембраны и повышении ее проницаемости играют ферменты лейкоцитарных гранул (эластаза, коллагеназа). 

Гранулы лейкоцитов также содержат катионные белки, которые также действуют на стенку кровеносных сосудов и способствуют эмиграции.

Первоначально в изгнании эмигрирующей клетки органелл нет. Затем за удлинением следует остальная масса гранулоцитов с ядром и гранулами. Эти клетки перемещаются к месту воспаления со скоростью от 6 до 12 микрон в минуту.

Разновидности гранулоцитов

На эмиграцию гранулоцитов влияет тип воспаления. Например, в случае бактериального воспаления эмигрируют в основном нейтрофилы, но в экссудате аллергического воспаления много лимфоцитов и эозинофилов. Гранулы этих лейкоцитов содержат вещества, инактивирующие гистамин, серотонин и, возможно, хинины, которых много в тканях в условиях гиперчувствительности.

Эмиграция моноцитов и лимфоцитов немного отличается от эмиграции нейтрофилов. Нейтрофилы мигрируют через эндотелиальную щель, а моноциты и лимфоциты мигрируют через эндотелий. После попадания в эндотелиальную клетку вокруг них образуется большая вакуоль. Попадая в него, моноцит и гимфоцит проходят через эндотелиальную клетку. 

Эмиграция лимфоцитов и моноцитов – более медленный процесс, эти клетки позже появляются в воспаленных тканях и образуют второй слой или лейкоциты.

Хемотаксис

Хемотаксис – это активное движение лейкоцитов либо в направлении определенных химических раздражителей, либо от них. 

В первом случае речь идет о положительной хемотаксии, а во втором – об отрицательной. Положительный хемотаксис играет роль на всех стадиях эмиграции лейкоцитов, особенно когда эти клетки уже покинули кровеносный сосуд и мигрируют во внесосудистое пространство.

И. Мечников первым наблюдал активное движение лейкоцитов к очагу воспаления и описал так называемый закон эмиграции лейкоцитов. Согласно ему, гранулоциты очень чувствительны к раздражителям хемотаксиса – так называемым гемоаттрактантам, поэтому они первыми эмигрируют к очагу воспаления. Хемотаксис моноцитов и лимфоцитов против этих раздражителей ниже. За гранулоцитами следуют моноциты и, наконец, лимфоциты.

Химические раздражители, вызывающие положительный гемотаксис, изучены достаточно подробно. Они делятся на две группы – хемотаксины и хемотаксигены. 

  • Хемотаксины – это вещества, которые могут привлекать лейкоциты. 
  • Хемотаксигены сами по себе не вызывают хемотаксии, но способствуют образованию хемотаксинов.

Примерами нейтрофильных хемотаксинов являются денатурированные белки, калихреин, компоненты комплемента (C3, C5), бактериальные токсины и гемотаксигены – трипсин, плазмин, коллагеназа, крахмал, гликоген, комплексы антиген-антитело. Хемотаксис подавляется гидрокортизоном. простагландины Ei и E2, цАМФ, колхицин.

Хемотаксины макрофагов представляют собой бактериальные культуры (Streptococcus pneumoniae, Corynebacteria) фильтрат белковых фракций, компонента С5а комплемента и др., кроме хемотаксигенов – липополисахаридов кишечных микробов, микобактерий, фракций лизосом лейкоцитов, протеиназ макрофагов.

Лейкоциты эозинофилов являются факторами хемотаксиса эозинофилов (высвобождаемых аллергеном и IgE из легких и гладких мышц), лимфокинов и других, но хемотаксигены представляют собой различные иммунные комплексы, а также продукты агрегации IgG и IgM.

Хемотаксис и активация лейкоцитов

В настоящее время считается, что реципиенты различных хемоаттрактантов присутствуют на поверхности эмигрирующих клеток (макрофагов). Например, были изучены рецепторы на поверхности макрофагов на Fc-фрагменте иммуноглобулинов, компоненте C3 комплемента и лимфокинах. Контакт клеточной мембраны с хемоаттрактантом изменяет мембранный потенциал, увеличивает проницаемость мембраны, увеличивает транспорт ионов Ca и Mg в клетке. Эти ионы контролируют функцию сокращения актомиозина. Активация микрофибрилл и внутриклеточной канальцевой системы способствует гематокриту и эмиграции лейкоцитов.

Отток экссудата способствует прохождению лейкоцитов через эндотелиальную щель. Кроме того, движение лейкоцитов также связано с некоторыми физико-химическими факторами. Воспалительные сурфактанты (аминокислоты, полипептиды) уменьшают поверхностное натяжение поверхности лейкоцитов и образование цитоплазматического объема на их поверхности, но положительно заряженные тканевые макромолекулы снижают отрицательный заряд лейкоцитов, нарушая электростатическую стабильность лейкоцитарной мембраны. Однако основную роль играют активные движения лейкоцитов, использующие энергию мацергических соединений.

Эмигрантские лейкоциты играют важную роль в дальнейшем развитии воспаления. Эти клетки являются источником биологически активных веществ. Однако главная из них – фагоцитарная функция лейкоцитов.

Продолжение статьи

  • Часть 1. Этиология и патогенез воспаления. Классификация.
  • Часть 2. Особенности обмена веществ при воспалении.
  • Часть 3. Физико – химические изменения. Роль нервной и эндокринной систем в развитии воспаления.
  • Часть 4. Изменения в периферическом кровообращении при воспалении.
  • Часть 5. Экссудация. Экссудат и транссудат.
  • Часть 6. Эмиграция лейкоцитов. Хемотаксис.
  • Часть 7. Фагоцитоз. Асептическое и острое воспаление.
  • Часть 8. Распространение. Последствия. Принципы лечения воспаления.
Читайте также:  Пшено от воспаления почек

Поделиться ссылкой:

Источник

Молекулы адгезии. Роль молекул адгезии при воспалении.

Движение лейкоцитов в очаг воспаления начинается с серии адгезионных событий, каждое из которых касается лейкоцитов определенного типа: нейтрофилов, моноцитов или лимфоцитов. Циркулирующие лейкоциты обычно вступают лишь в мимолетные контакты с эндотелиальными клетками посткапиллярных венул: лейкоциты как бы “скользят” по поверхности эндотелия сосудистой стенки. Эта фаза обеспечивается взаимодействием вначале Р-, а затем L- и Е-селектинов с углеводными компонентами мембран клеток.

L-селектин экспрессирован на большинстве лейкоцитов. селектин эндотелиальных клеток опосредует адгезию нейтрофилов и моноцитов к эндотелию. Е-селектин экспрессируется на активированных эндотелиальных клетках и поддерживает адгезию лимфоцитов. Лигандами селектинов служат сиалил-фукозилированные олигосахариды в составе многих гликопротеинов и гликолипидов мембран клеток, например, муциноподобные молекулы. Муциноподобный домен содержит клеточная адгезионная молекула – мукозный адрессин (MAdCAM-1), которая за счет взаимодействия с L-селектином обеспечивает возврат лимфоцитов в мукозноассоциированную лимфоидную ткань.

Некоторые из этих лиганд появляются на поверхности клеток только после их активации.

Фаза скольжения происходит без активации лейкоцитов, однако скользящие лейкоциты при контактах с поверхностью эндотелия получают сигналы активации, что ведет к их иммобилизации. Наступает вторая фаза прочной адгезии, опосредованная усилением способности лейкоцитарных интегринов связываться с лигандами из суперсемейства иммуноглобулинов на эндотелиальных клетках. В качестве сигналов активации могут служить воздействия цитокинов (хемокинов): MIP-ip, MCP-1, IL-8, MIF, PAF, С5а-фракции комплемента, которые способны связываться с глюкозамингликанами поверхности эндотелиальных клеток и действовать на “скользящие” лейкоциты.

адгезия при воспалении

Интегрины – это большое семейство молекул клеточной поверхности, представители которых обнаружены на большинстве типов клеток. Интегрины опосредуют взаимодействие клеток с их микроокружением, обеспечивая адгезию клетка – клетка и клетка – матрикс. Интегрины – это гетеродимеры гликопротеинов, состоящие из различных комбинаций а- и (J- цепей. Описано более 20 разных представителей интегринов. На лейкоцитах экспрессированы: LFA-1, Macl, pl50,95. Лигандами для LFA-1 являются : ICAM-1, ICAM-2, ICAM-3, для Macl -ICAM-1. Эти интегрины опосредуют адгезию к эндотелию нейтрофилов, базофилов, эозинофилов, моноцитов и лимфоцитов. В отличие от нейтрофилов остальные типы клеток могут адгезироваться к цитокин-активированным эндотелиальным клеткам через интегрины VLA-4 к лигандам VCAM-1.

На поверхности эндотелиальных клеток лигандами интегринов служат молекулы, имеющие структурную гомологию с иммуноглобулинами. К ним относятся интерклеточные адгезионные молекулы: ICAM-1, ICAM-2, ICAM-3, васкулярно-клеточная адгезионная молекула – VCAM1. Последняя эксирессируется преимущественно на активированных эндотелиальных клетках.

Следующая после прочной адгезии стадия трансмиграции лейкоцитов через эндотелий контролируется частично теми же интегринами, взаимодействующими с молекулами ICAM-1, расположенными и на внутренней, и на латеральной, и на базальной поверхности эндотелиальных клеток. Описаны и другие молекулы, облегчающие трансмиграцию лейкоцитов: например CD31 (РЕСАМ-1), обнаруженные и на эндотелиальных клетках, и на тромбоцитах, нейтрофилах, моноцитах, лимфоцитах. За трансмиграцию моноцитов отвечает интегрин CD18, но после активации эндотелиальных клеток под влиянием IL-1 и TNF-a трансмиграция идет при участии интегринов а, взаимодействующих с молекулой VCAM-1.

Все стадии адгезии и трансмиграции зависят от активации эндотелиальных клеток, которая проявляется усилением экспрессии на них адгезионных молекул. Экспрессия Е-селектина усиливается в самые ранние стадии воспаления тромбином, гистамином или активированной системой комплемента, и не требует синтеза белка de novo. Роль стимуляторов на этой стадии могут играть различные оксиданты.

– Также рекомендуем “Молекулы адгезии в подострой фазе воспаления.”

Оглавление темы “Воспаление легких.”:

1. Фибробласты и тромбоциты при воспалении в легких.

2. Активация и функция при воспалении в легких.

3. Цитокииы при воспалении. Миграцию ингибирующий фактор.

4. Интерферон – гамма. Значение и функции интерферона гамма при воспалении.

5. Интерлейкин 12. Значение и функции интерлейкина 12 при воспалении.

6. Туморнекротизирующий фактор альфа. Роль туморнекротизирующего фактора альфа при воспалении.

7. Интерлейкин 6, интерлейкин 8 и хемокины. Роли интерлейкина 6, интерлейкина 8 и хемокинов при воспалении.

8. Интерлейкин 10, 4. Роли интерлейкина 10 и 4 при воспалении.

9. Молекулы адгезии. Роль молекул адгезии при воспалении.

10. Молекулы адгезии в подострой фазе воспаления.

Источник

Адгезия лейкоцитов при воспалении

При попадании микроорганизмов в ткань начинается воспалительный процесс. Одним из его следствий является элиминация лейкоцитами чужеродного патогена и поддержание таким образом тканевого гомеостаза. Чтобы это произошло, лейкоцитам нужно осуществить перемещения: сначала по сосудам, затем непосредственно в ткань, и лишь тогда расправиться с микроорганизмом. Осуществляется это с помощью разнообразных вспомогательных белковых молекул — т. н. медиаторов воспаления, а также с помощью различных адгезинов, необходимых для полноценного иммунного ответа. Врожденное отсутствие последних было названо «дефицитом адгезии лейкоцитов», и на сегодняшний день заболевание считается неизлечимым.

Дефицит адгезии лейкоцитов (ДАЛ) — редкое наследственное заболевание, крайне опасное из-за тяжелейшего врожденного иммунодефицита: фагоцитарные клетки неспособны проникнуть в ткани, оставляя таким образом клетки беззащитными перед вирусами и бактериями.

В настоящее время выделяют три формы ДАЛ: ДАЛ-1, ДАЛ-2 и ДАЛ-3 (последнюю также называют «вариантом ДАЛ-1»). Чтобы разобраться в этом, сначала следует проследить механизм перехода лейкоцитов в ткань.

Механизм проникновения лейкоцитов в очаг воспаления

Лейкоциты активируются в фазу альтерации различными хемоаттрактантами (из группы медиаторов воспаления), которые в дальнейшем способствуют миграции лейкоцитов и их последующему выходу в ткани. Выделяют две группы аттрактантов:
— «Классические» аттрактанты — N-формильные бактериальные пептидные антигены [1], белки системы комплемента С3а и С5а, а также различные липидные молекулы по типу лейкотриена В4 [2].
— Т. н. «селективные» аттрактанты — группа белков суперсемейства хемокинов, которые можно условно разделить на 4 группы: CXC, CX3C, CC и C (названы так по наличию двух первых остатков цистеина — парных и высококонсервативных) [2], [3].

Хемоаттрактанты связываются со специфическими рецепторами лейкоцитов и вызывают их перемещение по «градиенту хемоаттракции», то есть к месту очага воспаления. У человека известно около 18 хемокиновых рецепторов, все они связаны с G-белками и состоят из 7 трансмембранных доменов, что является типичным для многих рецепторов [2]. При активации этих рецепторов начинает синтезироваться группа молекул адгезии, которая необходима для последовательного каскадного перехода лейкоцитов в ткань.

Изначально лейкоциты движутся с током крови, постепенно выходя из осевого потока на периферию и приближаясь к стенке сосуда (маргинация), после чего лейкоциты прикрепляются к эндотелию и просачиваются сквозь него непосредственно к месту повреждения.

Классически выделяют три этапа в процессе достижения тканевого очага воспаления [4]: «качание», обусловленное селектинами; активация лейкоцитов под влиянием хемокинов и внедрение в ткань, опосредованное интегринами.

В настоящее время эти этапы несколько расширены (см. рис.1) [5]. Первым этапом остается «качание» или «перекатывание» лейкоцитов, обусловленное особыми белками — селектинами и интегинами.

Селектины можно назвать молекулами распознавания и прикрепления. Большинство лейкоцитов секретируют селектин P, клетки эндотелия (воспаленные) — селектины Е и L. Основной рецептор для всех них — P-селектиновый гликозилированный рецептор-1 (PSGR-1). Именно за счет него лейкоциты способны прочно прикрепиться к эндотелию; благодаря ему же лейкоциты, которые не обладают необходимым «рецепторным паспортом», не могут пройти в очаг воспаления.

Интегрины — еще одна группа белков, обладающих адгезивными свойствами. В их группе выделяют два основных подсемейства: β1- и β2-интегрины, также имеются и другие. Наиболее важными являются следующие представители:

  • α4β7-интегрин — необходим для прикрепления к рецепторам клеточной адгезии слизистой сосуда MADCAM-1 (англ. mucosal vascular addressin cell-adhesion molecule-1);
  • α4β1-интегин или VLA4 (англ. very late antigen-4) — необходим для прикрепления к внеклеточному рецептору адгезии VCAM-1 (англ. vascular cell-adhesion molecule-1);
  • β2-интегрин — необходим для соединения с внутриклеточным рецептором адгезии ICAM-1 (англ. intracellular adhesion molecule-1).
  • Также имеется αLβ2-интегрин, имеющий аббревиатуру LFA-1( lymphocyte function-associated antigen-1), который также связывается с ICAM-1 рецептором [5].

Все эти сложности нужны лейкоциту для того, чтобы перейти в фазу «медленного качания», а затем и вовсе остановиться. «Захват» лейкоцитов происходит путем прочного связывания интегринов с белками VCAM и ICAM (их относят к суперсемейству иммуноглобулинов, синтезируются эндотелиоцитами под влиянием медиаторов воспаления) [6].

Чтобы произошло прочное связывание (адгезия), также нужны молекулы-регуляторы — уже знакомые нам хемокины (основные — ИЛ-4, ФНО). Они могут содержаться в кровотоке, транспортироваться эндотелиоцитами или синтезироваться активированными тромбоцитами и тучными клетками. Также эти хемокины обладают высокой аффинностью к упомянутым рецепторам, ассоциированным с G-белком (GPCR – G-protein coupled receptor) [5].

Условно считается, что β1-интегрины — молекулы эозинофилов, моноцитов и лимфоцитов, связываются с VCAM, а β2- интегрины — белки нейтрофилов и базофилов – с ICAM [22]; с их помощью лейкоцит прочно прикрепляется к эндотелию. После этого начинается финальный этап — трансмиграция.

Проникновение через стенку сосуда — чрезвычайно сложный процесс. Начинается он с медленного перемещения или «ползания» фагоцита по эндотелию (с помощью макрофагального антигена 1 — MAC1, рис.1). Лейкоцит «ищет» удобное место для миграции в ткань. Мигрировать лейкоцит способен как через межклеточное пространство (в большинстве случаев), так и непосредственно через клетку (таков механизм трансмиграции лейкоцитов в ЦНС) [5].

Между эндотелиоцитами лейкоцит проникает благодаря крайне гибкой мембране, он буквально «просачивается» сквозь межклеточные соединения. Процесс этот довольно длителен и сложен, занимает 15–20 минут и регулируется множеством хемокинов, цитокинов и др. [5, 22].

Трансцеллюлярно (непосредственно через эндотелиоцит) фагоцит проходит с помощью недавно открытого транспортного механизма — везикуло-вакуолярных органелл (VVO) [7]. Это небольшие мембранные структуры, предположительно специализированные транспортеры лейкоцитов (а именно нейтрофилов) через тело эндотелиоцита.

Рисунок 1 | Поэтапное проникновение лейкоцита через эндотелий сосуда [5].

Наконец, преодолев эндотелий, фагоцитарная клетка оказывается в очаге воспаления, где наводит порядок и способствует восстановлению ткани.
Из описанного выше механизма активации лейкоцитов и проникновения их в очаг воспаления становится понятна важность правильной работы всех задействованных молекул. Но вследствие определенной генетической мутации адгезивная способность лейкоцитов может быть нарушена — такое состояние называется дефицитом адгезии лейкоцитов (ДАЛ).

Классифицируют ДАЛ исключительно по виду дефектных молекул (и генов, их кодирующих). Клиническая картина, подход к диагностике и возможному лечению (или купированию заболевания) одинаковы в общих чертах, хотя имеются и нюансы.

Дефицит адгезии лейкоцитов 1 типа

ДАЛ 1 типа — редкое заболевание, передающееся по аутосомно-доминатному типу наследования. Этот первичный иммунодефицит кодируется геном ITGB2, отвечающим за экспрессию β2-интегринов (CD11/CD18). Распространенность заболевания — 1:1 000 000, в литературе можно встретить всего около 300 случаев [8], [9].

Впервые о нем сообщили как о полноценном самостоятельном заболевании в 1997 году [10], хотя в литературе и ранее были описаны случаи иммунодефицитов по причине дефекта β2-интегринов. Больше всего страдают нейтрофилы, которые не способны проникнуть в ткань.

Клинически это проявляется рецидивирующими жизнеугрожающими бактериальными и грибковыми инфекциями [11], [12]. Зачастую иммунодефицит проявляет себя очень рано, причем инфекции быстро переходят в септическую форму.

Отличительная особенность любого ДАЛ — отсутствие гноя в очаге воспаления. На коже и слизистых обнаруживаются очаги некроза, в детском возрасте смертность крайне высока. В дальнейшем (если грамотно устранять все инфекции) болезнь проявляет себя не так остро, более взрослые пациенты страдают от тяжелых гингивитов и хронических периодонтитов, но вероятность летального исхода у них существенно ниже.

Диагностика может осуществляться методами генной инженерии, но для ДАЛ-1 это нецелесообразно. Гораздо чаще выявляют маркеры CD11/CD18 методом проточной цитометрии — привычный и даже рутинный анализ в иммунологии [8]. Соответственно, при отсутствии данных маркеров можно говорить о ДАЛ 1 типа.

Единственным методом лечения ДАЛ-1 на данный момент является аллогенная трансплантация гемопоэтических клеток (АТГК) [13]. На протяжении с 1993 по 2007 год АТГК была произведена 36 пациентам в возрасте от 2 мес до 14 лет (средний возраст — 9 месяцев). Выживаемость составила около 75 %. Важно отметить, что большая часть смертей произошла по причине невозможности найти HLA-совместимого донора.

Помимо этого, существует достаточно перспективная патогенетическая терапия, а именно — трансфузия гранулоцитов. Метод на сегодняшний день достаточно спорный, разумеется, устранить ДАЛ он неспособен, зато вполне может справиться с тяжелыми инфекциями, как, например, с гангренозной эктимой [14].

Наконец, ДАЛ-1 можно купировать и сдерживать с помощью грамотной антибиотикотерапии, причем это тот самый случай, когда антибиотики следует применять и в качестве профилактики [11].

Дефицит адгезии лейкоцитов 2 типа

В основе ДАЛ-2 — дефект селектинов и, как следствие, невозможность «перекатывания» лейкоцитов по эндотелию. Но, в отличие от ДАЛ-1, этиология иммунодефицита не так очевидна, хотя бы потому, что известно всего лишь около 10 случаев данного заболевания [11].

Молекулярная природа ДАЛ-2 — недостаточность белка-переносчика ГДФ-фукозы (фукозилирование — одна из необходимых модификаций трансмембранных рецепторов адгезии [15]); сам белок переносчик — GFTP (англ. GDP-fucose transport protein) кодируется геном SLC35C1, он же FUCT1 [16].

Также дефицит вышеупомянутого GFTP приводит к еще двум редким феноменам: нарушение синтеза антигенов ABO-системы (бомбейский феномен) и недостаточность антигенов системы Льюиса [17]. Таким образом, дефект одного гена FUCT1 приводит сразу к трем редчайшим патологиям, которые крайне тяжело поддаются корректировке.

Клиническая картина, как ни странно, зачастую более мягкая в сравнении с ДАЛ1. Лейкоциты, хотя и лишены правильно работающих селектинов, все же имеют абсолютно интактные интегрины, то есть, хотя бы какая-то часть фагоцитов все же способна проникает в ткань и оказывает защиту от инфекции, которые становятся менее серьезными, чем в предыдущем случае. Иммунодефицит проявляется в основном на первом году жизни, в более взрослом периоде осложнения не так выражены (хотя и остается хронический периодонтит) [11].

Однако же не все так хорошо, как хотелось бы. Недостаточность все того же транспортера GFTP может проявляться (хоть и редко) задержкой роста и умственной отсталостью [18].

Диагностировать ДАЛ-2 можно на основании сочетанного феномена бомбейской группы крови и отсутствия антигенов Льюиса; окончательным же доказательством существования патологии будет генетический анализ гена FUCT1 [11].

Лечение ДАЛ-2 обычно протекает безрезультатно. На сегодняшний день помимо симптоматического лечения антибиотиками медицине предложить, в общем-то, нечего. Единственным более-менее эффективным может быть прием L-фукозы орально. По крайней мере, в исследовании состояние пациентов кратковременно улучшилось; однако спустя месяц нейтрофилы перестали реагировать на подобную поддержку [19].

Дефицит адгезии лейкоцитов 3 типа

Часто ДАЛ-3 относят к разновидностям ДАЛ-1 типа, однако такой подход вряд ли правильный. ДАЛ-3 гораздо более агрессивное заболевание, которое практически невозможно купировать.

Этиология болезни заключается в дефекте гена FERMT3, который отвечает за синтез всех β-интегринов. Результатом становится полная неспособность лейкоцита к хоть какому-нибудь прикреплению к эндотелиоцитам, не говоря уже о проникновении через стенку сосуда [11].

Помимо обычных тяжелых инфекций больные страдают также геморрагическим синдромом (наподобие тромбастении Гланцмана — продолжительность кровотечения составляет более 15 минут при норме 2–6 мин [20]. Это вполне ожидаемо, так как тромбоциты в процессе агрегации используют β3-интегрины.

ДАЛ-3 на сегодня выявлен примерно у 20 семей во всем мире. Это крайне тяжелая форма ДАЛ с высокой летальностью, зачастую новорожденные в таких семьях очень быстро умирали, причем еще до постановки диагноза.

В дополнение к уже описанной клинической картине (рецидивирующие тяжелые инфекции, отсутствие гноя, геморрагический синдром) можно назвать дефект костной ткани наподобие остеопетроза (остеосклероз, мраморная болезнь) [21]. Выявляется не у всех пациентов, однако подобная патология может существенно помочь в постановке диагноза.

Собственно диагностика проводится с помощью генного анализа. Существует ряд тестов, в которых можно распознать дефект нейтрофилов, например, тест с неопсонизированным зимозаном [11], который поможет дифференцировать ДАЛ-3 от ДАЛ-1. Однако подобные тесты требуют времени, а заболевание зачастую не оставляет шанса на раздумья.

Лечение мало отличается от такового при других формах ДАЛ. Это трансфузии гранулоцитов и (в данном случае) тромбоцитов, причем число трансфузий может достигать 50 в год. Единственным же способом этиотропной терапии остается аллогенная трансплантация гемопоэтических клеток [11].

Источники:

  1. E. Schiffmann, B. A. Corcoran, and S. M. Wahl, “N-formylmethionyl peptides as chemoattractants for leucocytes.,” Proc. Natl. Acad. Sci., vol. 72, no. 3, pp. 1059–1062, 1975.
  2. C. Murdoch and A. Finn, “Chemokine receptors and their role in inflammation and infectious diseases,” Blood, vol. 95, no. 10, pp. 3032–3043, 2000.
  3. M. Baggiolini, B. Dewald, and B. Moser, “Human Chemokines: An Update,” Annu. Rev. Immunol., vol. 15, no. 1, pp. 675–705, 1997.
  4. E. C. Butcher, “Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity,” Cell, vol. 67, no. 6, pp. 1033–1036, 1991.
  5. K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, “Getting to the site of inflammation: The leukocyte adhesion cascade updated,” Nat. Rev. Immunol., vol. 7, no. 9, pp. 678–689, 2007.
  6. J. J. Campbell, J. Hedrick, A. Zlotnik, M. A. Siani, D. A. Thompson, and E. C. Butcher, “Chemokines and the arrest of lymphocytes rolling under flow conditions,” Science (80-. )., vol. 279, no. 5349, pp. 381–384, 1998.
  7. A. M. Dvorak and D. Feng, “The vesiculo-vacuolar organelle (VVO): A new endothelial cell permeability organelle,” J. Histochem. Cytochem., vol. 49, no. 4, pp. 419–431, 2001.
  8. Hamid Nawaz Tipu, “Leukocyte Adhesion Deficiency Type I: A Rare Primary Immunodeficiency Disorder,” Pediatr. Allergy Immunol., vol. 28, no. 3, pp. 303–305, 2017.
  9. E. Almarza Novoa et al., “Leukocyte adhesion deficiency-I: A comprehensive review of all published cases,” J. Allergy Clin. Immunol. Pract., vol. 6, no. 4, p. 1418–1420.e10, 2018.
  10. T. W. Kuijpers et al., “Leukocyte Adhesion Deficiency Type 1/Variant: Dysfunctional b 2 Integrins,” J. Clin. Invest., vol. 100, pp. 1725–1733, 1997.
  11. E. van de Vijver, T. K. van den Berg, and T. W. Kuijpers, “Leukocyte Adhesion Deficiencies,” Hematol Oncol Clin N Am., vol. 27 (1), pp. 101–116, 2013.
  12. M. Movahedi et al., “Clinical and laboratory findings in Iranian patients with leukocyte adhesion deficiency (study of 15 cases),” J. Clin. Immunol., vol. 27, no. 3, pp. 302–307, 2007.
  13. W. Qasim et al., “Allogeneic Hematopoietic Stem-Cell Transplantation for Leukocyte Adhesion Deficiency,” Pediatrics, vol. 123, no. 3, pp. 836–840, 2009.
  14. F. Mellouli et al., “Successful treatment of fusarium solani ecthyma gangrenosum in a patient affected by leukocyte adhesion deficiency type 1 with granulocytes transfusions,” BMC Dermatol., vol. 10, pp. 2–4, 2010.
  15. B. Ma, J. L. Simala-Grant, and D. E. Taylor, “Fucosylation in prokaryotes and eukaryotes,” Glycobiology, vol. 16, no. 12, 2006.
  16. K. Lühn, M. K. Wild, M. Eckhardt, R. Gerardy-Schahn, and D. Vestweber, “The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter,” Nat. Genet., vol. 28, no. 1, pp. 69–72, 2001.
  17. A. Hidalgo, S. Ma, A. J. Peired, L. A. Weiss, C. Cunningham-Rundles, and P. S. Frenette, “Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene,” Blood, vol. 101, no. 5, pp. 1705–1712, 2003.
  18. T. Marquardt et al., “Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism,” J. Pediatr., vol. 134, no. 6, pp. 681–688, 1999.
  19. S. Yakubenia and M. K. Wild, “Leukocyte adhesion deficiency II: Advances and open questions,” FEBS J., vol. 273, no. 19, pp. 4390–4398, 2006.
  20. K. Jurk et al., “Novel integrin-dependent platelet malfunction in siblings with leukocyte adhesion deficiency-III (LAD-III) caused by a point mutation in FERMT3,” Thromb. Haemost., vol. 103, no. 5, pp. 1053–1064, 2010.
  21. S. Schmidt et al., “Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption,” J. Cell Biol., vol. 192, no. 5, pp. 883–897, 2011.
  22. E.F. Goljan, “Pathology”, Chapter 3, 2012.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Источник

Читайте также:  Антибиотики при воспаление почек камни