Гистамин роль в воспалении

Гистамин роль в воспалении thumbnail

Гистамин – это органическое, т.е. происходящее из живых организмов, соединение, имеющее в своей структуре аминные группы, т.е. биогенный амин.  В организме гистамин выполняет множество важных функций, о чем дальше. Избыток гистамина приводит к различным патологическим реакциям. Откуда берется избыточный гистамин и как с ним бороться?

Источники гистамина

  • Гистамин синтезируется в организме из аминокислоты гистидин:   Такой гистамин называется эндогенный.
  • Гистамин может попадать в организм с продуктами питания. В этом случае он называется экзогенный
  • Гистамин синтезируется собственной микрофлорой кишечника, и может всасываться в кровь из пищеварительного тракта. При дисбактериозе бактерии могут вырабатывать излишне большое количество гистамина, который вызывает псевдоаллергические реакции.

Установлено, что эндогенный гистамин значительно активнее экзогенного.

Синтез гистамина

В организме под воздействием гистидиндекарбоксилазы при участии витамина В-6 (пиридоксальфосфата) от  гистидина отщепляется карбоксильный хвост, так аминокислота превращается в амин.

Что значит гистамин

Синтез происходит:

  1. В желудочно-кишечном тракте в клетках железистого эпителия, где в гистамин превращается поступающий с пищей гистидин.
  2. В тучных клетках (лаброцитах) соединительной ткани, а также других органах. Тучных клеток особенно много в местах потенциального повреждения: слизистые дыхательных путей (нос, трахея, бронхи), эпителий, выстилающий кровеносные сосуды. В печени и селезенке синтез гистамина ускорен.
  3. В клетках белой крови – базофилах и эозинофилах

Произведенный гистамин либо запасается в гранулах тучных клеток или клетках белой крови, либо быстро разрушается ферментами. При нарушении баланса, когда гистамин не успевает разрушиться, свободный гистамин ведет себя, как бандит, учиняя погромы в организме, называемые псевдоаллергическими реакциями.

            Механизм действия гистамина

Гистамин оказывает действие, связываясь с особыми гистаминовыми рецепторами, которые обозначаются H1, H2, H3, H4.  Аминная голова гистамина взаимодействует с аспарагиновой кислотой, находящейся внутри клеточной мембраны рецептора, и запускает каскад внутриклеточных реакций, которые проявляются в определенных биологических эффектах.

            Гистаминовые рецепторы

Что значит гистамин

  • Н1 рецепторы находятся на поверхности мембран нервных клеток, клеток гладкой мускулатуры дыхательных путей и сосудов, эпителиальных и эндотелиальных клеток (клеток кожи и выстилки кровеносных сосудов), клеток белой крови, ответственных за обезвреживание чужеродных агентов

Их активация гистамином вызывает внешние проявления аллергии и бронхиальной астмы: спазм бронхов с затруднением дыхания, спазм гладкой мускулатуры кишечника с болью и профузным поносом, повышается проницаемость сосудов, в результате чего возникают отеки. Повышается выработка медиаторов воспаления – простагландинов, которые повреждают кожу, что ведет к кожным высыпаниям (крапивнице) с покраснением, зудом, отторжением поверхностного слоя кожи.

Рецепторы, находящиеся в нервных клетках, ответственны за общую активацию клеток головного мозга, гистамин включает режим бодрствования.

Препараты, блокирующие действие гистамина на Н1 рецепторы, используются в медицине для торможения аллергических реакций. Это димедрол, диазолин, супрастин. Так как они блокируют рецепторы, находящиеся в головном мозгу наряду с другими Н1 рецепторами, побочным эффектом этих средств является чувство сонливости.

  • Н2 рецепторы содержатся в мембранах париентальных клеток желудка – тех клеток, которые вырабатывают соляную кислоту. Активация этих рецепторов приводит к повышению кислотности желудочного сока. Данные рецепторы задействованы в процессах переваривания пищи.

Существуют фармакологические препараты, селективно блокирующие Н2 гистаминовые рецепторы. Это циметидин, фамотидин, роксатидин и др. Их используют в лечении язвенной болезни желудка, поскольку они подавляют выработку соляной кислоты.

Кроме влияния на секрецию желез желудка, Н2 рецепторы запускают выделение секрета в дыхательных путях, что провоцирует такие симптомы аллергии, как насморк и выделение мокроты в бронхах при бронхиальной астме.

Кроте того стимуляция Н2 рецепторов оказывает влияние на реакции иммунитета:

Угнетаются IgE – иммунные белки, подбирающие чужеродный белок на слизистых, тормозит миграцию эозинофилов (иммунных клеток белой крови, ответственных за аллергические реакции) к месту воспаления, усиливает угнетающее действие Т-лимфоцитов.

  • Н3 рецепторы находятся в нервных клетках, где они принимают участие в проведении нервного импульса, а также запускают освобождение других нейромедиаторов: норадреналина, допамина, серотонина, ацетилхолина. Некоторые антигистаминные препараты, такие как димедрол, наряду с Н1 рецепторами, действуют на Н3 рецепторы, что проявляется в общем торможении центральной нервной системы, которая выражается в сонливости, торможении реакций на внешние раздражители. Поэтому неселективные антигистаминные препараты следует принимать с осторожностью лицам, чья деятельность требует быстроты реакций, например, водителям транспортных средств. В настоящее время разработаны препараты селективного действия, которые не оказывают влияния на работу Н3 рецепторов, это астемизол, лоратадин и др.
  • Н4 рецепторы находятся в клетках белой крови – эозинофилах и базофилах. Их активация запускает реакции иммунного ответа.

Биологическая роль гистамина

Гистамин имеет отношение к 23 физиологическим функциям, ибо это высокоактивное химическое вещество, которое легко вступает в реакции взаимодействия.

Читайте также:  Воспаление косточки на большом пальце руки

            Основными     функциями гистамина    являются:

  • Регуляция местного кровоснабжения
  • Гистамин – медиатор воспаления.
  • Регуляция кислотности желудочного сока
  • Нервная регуляция
  • Другие функции

Что значит гистамин

Регуляция местного кровоснабжения

Гистамин регулирует местное кровоснабжение органов и тканей. При усиленной работе, например, мышцы, возникает состояние нехватки кислорода. В ответ на местную гипоксию ткани высвобождается гистамин, который заставляет капилляры расширяться, приток крови увеличивается, а с ним увеличивается и приток кислорода.

Гистамин и аллергия

Гистамин является основным медиатором воспаления. С этой функцией связано его участие в аллергических реакциях

 Он содержится в связанном виде в гранулах тучных клеток соединительной ткани и базофилов и эозинофилов – клеток белой крови. Аллергическая реакция – это реакция иммунного ответа на вторжение чужеродного белка, называемого антигеном. Если этот белок уже поступал в организм, клетки иммунологической памяти сохранили информацию о нем и передали на особые белки – иммуноглобулины Е (IgE), которые называют антитела. Антитела обладают свойством специфичности: они узнают и реагируют лишь на свои антигены.

При повторном поступлении в организм белка – антигена, их узнают антитела-иммуноглобулины, которых прежде были сенсибилизированы этим белком. Иммуноглобулины – антитела связываются с белком-антигеном, образуя иммунологический комплекс, и весь этот комплекс прикрепляется к мембранам тучных клеток иили базофилов. Тучные клетки иили базофилы реагируют на это путем высвобождения гистамина из гранул в межклеточную среду. Вместе с гистамином из клетки выходят другие медиаторы воспаления: лейкотриены и простагландины. Все вместе они дают картину аллергического воспаления, которое проявляется по-разному, в зависимости от первичной сенсибилизации.

механизм аллергии

  • Со стороны кожи: зуд, покраснение, отечность (Н1 рецепторы)
  • Дыхательные пути: сокращение гладкой мускулатуры (Н1 и Н2 рецепторы), отек слизистой (Н1 рецепторы), повышенная продукция слизи (Н1 и Н2 рецепторы), уменьшение просвета кровеносных сосудов в легких (Н2 рецепторы). Это проявляется в чувстве удушья, нехватки кислорода, кашле, насморке.
  • Желудочно-кишечный тракт: сокращение гладкой мускулатуры кишечника (Н2 рецепторы), что проявляется в спастических болях, поносе.
  • Сердечно-сосудистая система: падение артериального давления (Н1 рецепторы), нарушение сердечного ритма (Н2 рецепторы).

Выход гистамина из тучных клеток может осуществляться экзоцитарным способом без повреждения самой клетки или происходит разрыв мембраны клетки, что приводит к одномоментному поступлению в кровь большого количества как гистамина, так и других медиаторов воспаления. В результате возникает такая грозная реакция, как анафилактический шок с падением давления ниже критического, судорогами, нарушением работы сердца. Состояние опасно для жизни и даже неотложная врачебная помощь спасает не всегда.

В повышенных концентрациях гистамин выделяется при всех воспалительных реакциях, как связных с иммунитетом, так и неимунных.

Регуляция кислотности желудочного сока

Энтерохромафинные клетки желудка высвобождают гистамин, который через Н2 рецепторы стимулирует обкладочные (париентальные) клетки. Обкладочные клетки начинают поглощать воду и углекислый газ из крови, которые посредством фермента карбоангидразы превращаются в угольную кислоту. Внутри обкладочных клеток угольная кислота распадается на ионы водорода и бикарбонат-ионы. Бикарбонат-ионы отправляются обратно в кровоток, а ионы водорода поступают в просвет желудка через К+   Н+ насос, понижая рН в кислую сторону. Транспорт ионов водорода идет с затратой энергии, высвобождающейся из АТФ. Когда рН желудочного сока становится кислой, высвобождение гистамина прекращается.

Регуляция деятельности нервной системы

В центральной нервной системе гистамин высвобождается в синапсы – места соединения нервных клеток между собой. Гистаминовые нейроны обнаружены в задней доле гипоталамуса в туберомаммилярном ядре. Отростки данных клеток расходятся по всему головному мозгу, через медиальный пучок переднего мозга они идут в Кору  больших полушарий. Основной функций гистаминовых нейронов является поддерживание головного мозга в режиме бодрствования, в периоды расслабленияусталости их активность снижается, а в период быстрой фазы сна они неактивны.

 Гистамин обладает  защитным действием на клетки центральной нервной системы, он снижает предрасположенность к судорогам, защищает от ишемических повреждений и последствий стресса.

Гистамин контролирует механизмы памяти, способствуя забыванию информации.

Репродуктивная функция

 Гистамин связан с регуляцией полового влечения. Инъекция гистамина в пещеристое тело мужчин с психогенной импотенцией восстанавливало эрекцию у 74% из них. Выявлено, что антагонисты Н2 рецепторов, которые обычно принимают при лечении язвенной болезни в целью снижения кислотности желудочного сока, вызывают потерю либидо и эректильную дисфункцию.

Разрушение гистамина

Выделившийся в межклеточное пространство гистамин после соединения с рецепторами частично разрушается, но по большей части поступает обратно в тучные клетки, накапливаясь в гранулах, откуда опять может высвобождаться при действии активирующих факторов.

Разрушение гистамина происходит под действием двух основных ферментов: метилтрансферазы и диаминооксидазы (гистаминазы).

Читайте также:  Антибиотики при воспаление уретры

метаболизм гистамина

Под воздействием метилтрансферазы в присутствии S-аденозилметионина (SAM) гистамин превращается в метилгистамин.

 Эта реакция в основном происходит в центральной нервной системе,  слизистой оболочке кишечника, печени, тучных клетках (мастоцитах, лаброцитах). Образовавшийся метилгистамин может накапливаться в тучных клетках и при выходе из них, взаимодействовать с Н1 гистаминовыми рецепторами, вызывая все те же эффекты.

Гистаминаза превращает гистамин в имидазолуксусную кислоту. Это основная реакция инактивации гистамина, которая происходит в тканях кишечника, печени, почках, в коже, клетках вилочковой железы (тимуса), эозинофилах и нейтрофилах.

 Гистамин может связываться с некоторыми белковыми фракциями крови, что сдерживает избыточное взаимодействие свободного гистамина со специфическими рецепторами.

 Небольшое количество гистамина выделяется в неизмененном виде с мочой.

Псевдоаллергические реакции

 Псевдоаллергические реакции по внешним проявлениям ничем не отличаются от истинной аллергии, но они не имеют иммунологической природы, т.е. неспецифичны. При псевдоаллергических реакциях нет первичного вещества – антигена, с которым бы связывался белок-антитело в иммунологический комплекс. Аллергические пробы при псевдоаллергических реакциях ничего не выявят, ибо причина псевдоаллергической реакции не в проникновении в организм чужеродного вещества, а в интолерантности самого организма к гистамину. Интолерантность возникает при нарушении равновесия между гистамином, поступившем в организм с пищей и высвободившимся из клеток, и дезактивацией его ферментами. Псевдоаллергические реакции по своим проявлениям не отличаются от аллергических. Это могут быть поражения кожи (крапивница), спазм дыхательных путей, заложенность носа, диарея, гипотония (снижение артериального давления), аритмия.

Часто псевдоаллергические реакции возникают при употреблении продуктов с высокой концентрацией гистамина. О продуктах, нашпигованных гистамином, читайте здесь: https://zaryad-zhizni.ru/v-kakih-produktah-soderzhitsya-gistamin/.

Источник

Тучные клетки и гистамин. Роль гистамина в воспалении бронхов.

Тучные клетки бывают разных видов и от этого зависят морфологические изменения, сопровождающие их дегрануляцию: если в коже тучные клетки выделяют интактные гранулы, которые могут быть фагоцитированы фибробластами, то в легких гранулы тучных клеток растворяются внутриклеточно, и часть мембран гранул вместе с клеточной мембраной формируют каналы, через которые содержимое гранул выделяется наружу. Специфические морфологические, биохимические и функциональные черты тучных клеток диктуются специфическим микроокружением: так, тучные клетки кожи после стимуляции морфином in vitro выделяют медиаторы воспаления, а тучные клетки легких, сердца и желудочно-кишечного тракта – нет.

Конечно, гетерогенность тучных клеток выходит далеко за рамки ответа на опиаты. Кроме антигензависимой дегрануляции тучных клеток, связанной с реакцией ГНТ, существует большое количество либераторов гистамина (токсины, ферменты, лекарства, различные макромолекулы и др.), вызывающих дегрануляцию тучных клеток неиммунологическим путем.

Гистамин считается своеобразным маркером тучной клетки, но последняя выделяет большое количество медиаторов, среди которых лейкотриены С4, Д4, Е4, простагландин Д гепарин, триптаза, причем не исключается, что гистамин и другие цитокины играют роль в генезе хронического воспаления при БА, выделяясь в небольшом количестве даже в фазе ремиссии. Имеются данные об активации тучноклеточной триптазой латентной коллагеназы, что, в итоге, приводит к повреждению соединительной ткани легких. Не исключено, что различные стимуляторы выделения БАВ, воздействуя на тучные клетки, могут избирательно потенцировать выделение или синтез de novo тех или иных медиаторов: так, местное воздействие на слизистую бронхов аденозинмонофосфата достоверно повышает выделение тучными клетками вторичного медиатора-простагландина Д2, но не первичных медиаторов (гистамина и триптазы).

тучные клетки и гистамин

Выделены разные группы больных атопической БА с одинаково повышенным уровнем гистамина и достоверно отличавшихся по уровню гистаминазы; причем эти группы больных отличались также по клинической картине болезни; больные с более высокой активностью гистаминазы были старше, имели более длительный анамнез заболевания и более тяжелое его течение. Участие гистамина в патологических процессах в легких, как органе-мишени, не всегда сопровождается повышением уровня гистамина в крови. Показано, что в ряде случаев уровень гистамина крови после провокации аллергеном был тем меньше, чем большей была гиперреактивность бронхов. Найдено повышение содержания гистамина в конденсате влаги выдыхаемого воздуха и в мокроте больных БА и хроническим бронхитом. В.А. Гончарова и соавт. считают, что из целого ряда БАВ, выявленных в конденсате влаги выдыхаемого воздуха (серотонин, гистамин, ацетилхолин, катехоламины), у больных БА наиболее информативно повышение уровня гистамина.

У больных БА с хроническим бронхитом в ряде случаев продуцентами гистамина могут быть содержащиеся в бронхиальном дереве различные бактерии, а не тучные клетки. Вместе с тем, выделяющийся в легких свободный гистамин ответственен за начало ранней стадии воспаления. У больных БА гистамин не является, возможно, главным медиатором, но все же принимает участие в развитии отека слизистой и бронхоспазма. У некоторых больных гистамин реализует свое действие не только прямым влиянием на бронхи, но также путем усиления генерации фагоцитами активных форм кислорода. Активация тучных клеток может зависеть от тяжести течения БА. Rankin J. et al. не нашли повышения уровня гистамина в содержимом бронхоальвеолярного лаважа у больных легкой БА, в отличие от больных тяжелой БА. Гистамин повышает капиллярную проницаемость, повреждает капиллярную стенку и усиливает деполимеризацию основного вещества соединительной ткани.

Получены данные о повышении гистамином посткапиллярного сопротивления на фоне относительно постоянного значения сопротивления артериальной части сосудистого русла, что приводит к росту капиллярного гидростатического давления и усилению процессов фильтрации в легочный интерстиций. Действуя на Н1-рецепторы бронхов гистамин вызывает бронхоконстрикцию, а действие гистамина на Н1-рецепторы сосудов малого круга вызывает их сужение. Повышение давления в системе легочной артерии под влиянием гистамина связано с увеличением проницаемости гладкомышечных клеток для внеклеточного кальция и мобилизации внутриклеточного кальция. Возможно, легочная гипертензия, возникающая при гипоксической гипоксии, опосредуется тучными клетками, выделяющими гистамин. Гистамин модулирует активность многих клеток, принимающих участие в иммунном воспалении, и оказывает влияние на клеточные иммунные реакции.

Через Н1-рецепторы реализуется провоспалительный эффект гистамина, а все ингибирующие эффекты гистамина на функцию лимфоцитов и противовоспалительное действие реализуются через Н2-рецепторы, и не исключается, что одновременная стимуляция Н1 и Н2-рецепторов на иммунокомпетентных клетках приводит к развитию супрессорной активности, а дефект Н2-рецепторов при аллергических заболеваниях может иметь генерализованный характер и приводить к повышению функциональной активности Н1-рецепторов, усилению воспалительных реакций и увеличению выхода гистамина из тучных клеток. Высказывается предположение, что в ряде случаев для больных БА повышенный уровень гистамина может иметь положительное значение: благодаря существованию двух функционально противоположных типов гистаминовых рецепторов гистамин через отрицательную обратную связь играет роль ограничителя аллергического воспаления, а патологические изменения, вызванные гистамином, возникают лишь при нарушении гомеостатического механизма регуляции через систему Н1 и Н2-рецепторов, т.е. при сдвиге механизмов контроля.

Считается, что у больных аллергическими болезнями, в том числе при БА, гистамининдуцированная супрессия иммунного ответа нарушается из-за уменьшения Н2-позитивных Т-лимфоцитов, вырабатывающих HSF (гистамин-индуцированный фактор супрессии). Несмотря на многообразие действия гистамина и его роль “маркера” тучных клеток, не всегда просто выяснить его значение в патогенезе легочных заболеваний, поскольку в организме гистамин высвобождается при любой травме и находится также вне тучных клеток, являясь постоянной составной частью почти всех органов, тканей, жидких сред и выделений. Помимо тучных клеток, существенную роль в выделении гистамина могут играть базофилы, различающиеся по своей плотности и наличию в них гистамина: несмотря на небольшое содержание в крови, базофилы могут становиться многочисленными в зоне воспаления и играть важную роль в поздней фазе аллергических реакций, а также получены данные о повышенном выходе гистамина из базофилов под действием ФАТ. Существенная роль в генезе различных видов воспаления взаимодействия “тучная клетка – эозинофил” дополняется не менее важной осью “тучная клетка – нейтрофил”: медиаторы тучных клеток влияют на выделение нейтрофилами свободных радикалов кислорода, а активированные нейтрофилы стимулируют выделение гистамина из тучных клеток.

Сейчас считается, что тучные клетки играют центральную роль в возникновении бронхообструкции в течение ранней астматической реакции, выделяя гистамин, простагландин Д2, цистеиновые ЛТ, ферменты (триптаза, протеаза), не только вызывающие спазм гладкой мускулатуры бронхов, но также влияющие на сосудистую проницаемость, усиливающие деятельность железистого аппарата бронхов, и разрыхляющие соединительнотканный матрикс. Привлечение различными тучноклеточными медиаторами, такими как ИЛ-3, ИЛ-4, ИЛ-5, нейтрофильный хемотаксический фактор, ФАТ, гранулоцитарно-макрофагальный колониестимулирующий фактор других клеток воспаления, приводит к развитию персистирующей воспалительной реакции в бронхах больных БА, что типично для хронического течения этой болезни, а активация протеазами тучных клеток разных коллагеназ приводит к нарушениям соединительной ткани и способствует не только хронизации воспаления, но и формированию необратимых морфологических изменений.

– Также рекомендуем “Эйкозаноиды. Воспаление бронхов и выделение эйкозаноидов.”

Оглавление темы “Воспаление бронхов.”:

1. Аспирин и циклоспорин при воспалении легких.

2. Механизмы воспаления бронхов и легких.

3. Роль эпителия бронхов при воспалении.

4. Роль эндотелия легочных сосудов при воспалении.

5. Альвеолярные макрофаги. Роль альвеолярных макрофагов в воспалении легких.

6. Эозинофилы. Тромбоциты. Роль эозинофилов, тромбоцитов в воспалении бронхов.

7. Тучные клетки и гистамин. Роль гистамина в воспалении бронхов.

8. Эйкозаноиды. Воспаление бронхов и выделение эйкозаноидов.

9. Серотонин. Функции серотонина при воспалении бронхов.

10. Механизмы инфекционного воспаления бронхов.

Источник

Читайте также:  Дешевые свечи от воспаления придатков с противовоспалительным действием