Маркеры воспаления в иммунологии

Маркеры воспаления в иммунологии thumbnail

Комментарии

Всероссийское научное общество кардиологов. Москва 2011

Предыдущий раздел | Содержание | Следующий раздел

15. Маркеры воспаления и гемостатические факторы

В настоящее время активно изучается роль маркеров воспаления и гемостатических факторов в развитии атеросклероза. Эти маркеры связаны с различными биологическими системами, такими как регуляция активности тромбоцитов, коагуляция, фибринолиз, эндотелиальная функция и воспалительный ответ. Помимо потенциальной значимости перечисленных маркеров в качестве предикторов ССЗ, была установлена тесная связь маркеров воспаления с ожирением и СД [213].

Воспаление – одно из основных патологических изменений, наблюдающихся при атеросклерозе артерий, включая наиболее ранние стадии, которые обусловливают формирование АСБ; кроме того, оно лежит в основе изменений, способствующих повреждению бляшки и образованию тромба. В эпидемиологических и морфологических исследованиях последних двух десятилетий были получены убедительные доказательства того, что уровень С-реактивного белка (СРБ) в плазме крови является признаком вялотекущего воспалительного процесса и неблагоприятным прогностическим фактором как у больных с острым коронарным синдромом, так и у здоровых лиц, не имеющих клинических проявлений ССЗ [214, 215]. Установлено, что маркеры активного воспаления тесно ассоциируются с развитием фатального и нефатального ИМ [216–219].

СРБ является высокочувствительным, но неспецифичным маркером воспаления и повреждения (таблица 14). Любое повреждение тканей, как вызванное травмой, так и связанное с воспалением, приводит к повышению уровня СРБ в плазме крови. Концентрация СРБ возрастает уже в первые 6–9 часов, достигая пика на 1–3 день с момента повреждения, и достаточно быстро снижается на фоне эффективного лечения или элиминации очага воспаления. Учитывая низкую специфичность СРБ для оценки риска нежелательных ССО, анализ рекомендуется проводить дважды с интервалом в 2 недели. Для анализа используется венозная кровь, которая берется независимо от приема пищи (у лиц с отсутствием нарушений обмена веществ). Если в одном из анализов уровни СРБ превышают 10 мг/л, следует исключить наличие инфекционных или воспалительных заболеваний и повторить измерение.

Таблица 14. Риск нежелательных ССО в зависимости от уровня СРБ

Уровни С-реактивного белкаРиск нежелательных сердечно-сосудистых событий
<1 мг/лНизкий риск
1–3 мг/лУмеренный риск
3–10 мг/лВысокий риск
>10 мг/лРезультат не может быть использован для оценки риска, так как повышение уровней высокочувствительного маркера воспаления может быть связано с травмой, инфекционным или воспалительным заболеванием

Лечебные вмешательства, снижающие уровни СРБ:

  • “Здоровая” диета с низким содержанием жиров, легкоусвояемых углеводов, богатая растительными волокнами;
  • Снижение уровня общего ХС в крови;
  • Снижение избыточной МТ;
  • Регулярная аэробная физическая нагрузка умеренной интенсивности;
  • Снижение повышенных уровней глюкозы в крови у больных СД;
  • Снижение повышенного АД;
  • Отказ от курения;
  • Уменьшение употребления алкоголя;
  • Прием статинов, тиазолидиндионов (росиглитазон, пиоглитазон), тиенопиридиновых производных (клопидогрель, тиклопидин), аспирина и противовоспалительных лекарственных средств.

Учитывая низкую специфичность СРБ, использование его как скринирующего метода для оценки кардиоваскулярного риска было бы в настоящее время преждевременно.

Другим заслуживающим внимания маркером воспаления является неоптерин. Неоптерин является высокоспецифичным и высокочувствительным маркером активации макрофагов, играющих важную роль на всех этапах формирования и развития АСБ. Повышение содержания неоптерина в биологических жидкостях – крови, моче, слюне свидетельствует об активации клеточного иммунитета. Несмотря на то, что неоптерин является маркером воспаления, его уровни слабо коррелируют с уровнями СРБ. В ряде исследований было показано, что повышенные уровни неоптерина у лиц с низкими уровнями ХС-ЛНП (Плацентарный фактор роста (PlGF), играющий роль первичного воспалительного медиатора неоангиогенеза, является маркером нестабильного течения атеросклероза. PlGF участвует в ключевых механизмах, приводящих к дестабилизации АСБ. Он способен инициировать неоангиогенез в артериальной стенке путем привлечения моноцитов/макрофагов и стимуляции клеток воспаления, эндотелиоцитов и гладкомышечных клеток к выбросу хемоаттрактантов, провоспалительных цитокинов и матриксных металлопротеиназ. Прогностическая значимость определения уровней PlGF изучалась в рамках ряда проспективных исследований. Так, в группе больных с острым коронарным синдромом, принимавших участие в исследовании CAPTURE, повышенные уровни PlGF достоверно предсказывали увеличение риска развития нефатального ИМ и сердечно-сосудистую смерть в течение ближайших 30 дней. Показано, что уровни PlGF не зависят от возраста и пола, ИМТ, среднего уровня систолического и диастолического АД, СД II типа, наличия в анамнезе перенесенного ИМ или нарушения мозгового кровообращения. Не выявлено зависимости между уровнями PlGF с уровнями СРБ и интерлейкина-6. Наблюдение в течение 2 лет показало, что выявление в крови больных ИБС уровней PlGF выше 20,5 пг/мл свидетельствует о более неблагоприятном прогнозе (смерть от ССЗ, нефатальный ИМ) по сравнению с больными с низкими (Недавно стало известно, что ассоциированный с беременностью протеин плазмы-А (PAPP-A), представляющий собой цинксодержащую металлопротеиназу, в изобилии продуцируется клетками АСБ, особенно нестабильной. У больных острым коронарным синдромом уровень PAPP-A выше, чем у больных стабильной стенокардией, и его определение в крови можно использовать в качестве предиктора неблагоприятного прогноза больных ИБС, который может оказаться более чувствительным маркером воспаления и предиктором нестабильности АСБ, чем тропонины и кардиоспецифические ферменты.

Результаты исследований свидетельствуют, что у практически здоровых лиц повышенные уровни РАРР-А предсказывают наличие эхогенных бляшек в сонных артериях. Уровни РАРР-А достоверно выше у больных с гиперлипидемией по сравнению с нормолипидемическими пациентами.

На сегодняшний день нет ответа на вопрос, является ли повышение уровней РАРР-А в крови больных следствием или одним из предикторов развития ОКС. Повышение уровней PAPP-A может иметь место еще до развития ОКС: у больных с так называемыми легкоранимыми АСБ в сонных артериях уровни PAPP-A в крови выше по сравнению с теми, у кого отмечаются только начальные признаки атеросклероза сонных артерий.

Таким образом, PAPP-A является биохимическим маркером, участвующим в патогенезе ИБС. Уровень PAPP-A в плазме крови коррелирует с выраженностью системного воспаления, он повышен у больных острым коронарным синдромом. У больных с более высокими уровнями PAPP-A отмечается менее благоприятный прогноз в течение 2 лет наблюдения.

До сих пор остается открытым вопрос, какова в действительности роль маркеров воспаления и гемостатических факторов в патогенезе ССЗ, насколько независимы они от других ФР и свидетельствует ли их динамика (например, СРБ и фибриногена) об изменении активности воспаления при атеросклерозе [219–220]. В ряде исследований было показано, что добавление “новых” ФР к уже существующим стандартным моделям оценки риска позволяет точнее предсказать вероятность развития ИБС и других ССЗ (в частности АГ и инсульта [219– 222]. Однако в настоящее время было бы преждевременным широко использовать СРБ и другие “новые” маркеры в рутинной практике кардиолога для оценки кардиоваскулярного риска.

Предыдущий раздел | Содержание | Следующий раздел

Комментарии

(видны только специалистам, верифицированным редакцией МЕДИ РУ)

Источник

          Под воспалением некоторые иммунологи понимают реакции организма на внедрение инфекционного агента. Воспаление усиливает клеточную миграцию и вызывает приток различных молекул из плазмы крови. Лейкоциты мигрируют через эндотелий везикул, а молекулы плазмы крови попадают в воспалительный экссудат из капилляров , где кровяное давление выше.  Кровенаполнение капилляров увеличивается , также как и их проницаемость. Проницаемость капилляров повышается вследствие “втягивания” клеток эндотелия и усиления транспорта везикул сквозь эндотелий. В очаг воспаления поступают антитела, компоненты комплемента, ферментные системы плазым крови. Кромето того, развитие процессов воспаления происходит при участии хемокинов , продукции активации ферментных систем плазмы , вазоактивных медиаторов , выделяемых лейкоцитами и др. Достигая очага инфекции , лейкоциты ранней волны миграции выделяют медиаторы , обеспечивающие накопление  и активацию клеток, но главная роль регулятора воспалительных реакций принадлежит антигену. Очаг хронической инфекции или аутоиммунных реакций , в которых антиген не удается устранитьокончательно отличается по клеточному составу инфльтрата от очагов острого воспаления , быстро освобождаемых от антигена.

            Острофазные белки – белки коагуляции ( фибриноген, протромбин) , транспортные белки ( целуроплазмин , ферритин, трансферрин , гаптоглобин, С – реактивный белок и др.) способны выполнять функции медиаторов иммунной системы. Определение концентрации отдельных цитокинов не позволяет оценить состояние клеточного иммунитета, поскольку у них короткий период полужизни , они связываются со специфическими рецепторами , представленными на клетках – мишенях или циркулируют в растворимой форме. Биологический эффект одного цитокина реализуется при содействии другого.  Клеточное звено иммунитета можно оценить с помощью биологически интертного продукта – неоптерина. Последний является интегральным показателем совместного действия цитокинов на популяцию моноцитов / макрофагов , стимулированных гамма – интерфероном.

           Неоптерин – промежуточный продукт в синтезе биоптерина , учавствующего в активации лимфоцитов. Иммуная реакция сопровождается значительным увеличением концентрации неоптерина. Определение неоптерина используют для клинической оценки иммуномодуляторов ( интерферонов, интерлейкинов, фактора некроза опухоли). , диагностики вирусных инфекций , оценки эффективности иммуностимулирующей терапии.

           К биологическим маркерам воспаления также относятся: MRP8, MRP14 , белок амилоида А сывороточный ( SAA) , С – реактивный белок , циркулирующие иммунные комплексы пероксиды, хемокины, цитокины.

           MRP8 и MRP14  – белки , продуцируемые нейтрофилами в стадии покоя , а кератиноцитами , инфильтрированной тканью , макрофагами и эпителиальными клетками при активном воспалительном процессе. Фагоциты эскпрессируют как MRP8 так и MRP14. Два белка формируют Са2+ – зависимые гомо – или гетерокомплексы , разные по составу. Гетерокомплекс MRP8 / 14 называют кальпротектином ( родственный MIP  белок ) или L1 – протеином . Белок амилоида А сывороточный является маркером острой фазы воспаления, предшественником фибриллярного тканевого белка АА. Усиленный синтез SAA гепатоцитами при их воспалении стимулируетя макрофагальным медиатором – IL-1 , что приводит к резкому увеличению содержания SAA в крови. По завершению воспалительно процесса SAA разрушается макрофагами. В случае длительно существующего воспалительного процесса макрофаги не в состоянии осуществить полную деградацию SAA и из его фрагментов происходит синтез фибрилл амилоида , который представляет гликопротеид , а его основным компонентом являются фибриллярные белки. С – реактивный белок – показатель острой фазы течения воспалительных и некротических процессов. С – реактивный белок усиливает подвижность лейкоцитов., связываясь с Т – лимфоцитами он влияет на их функциональную активность , инициируя реакции преципитации , аггулютинации, фагоцитоза, связывания комплемента. С – реактивный белко синтезируется в печени и состоит из 5 кольцевых субъединиц. Повышение концентрации  С – реактивного белка характерно для ревматизма , острых бактериальных, грибковых , вирусных и паразитарных инфекций , ревматоидного артрита, ревмакардита. Циркулирующие иммунные комплексы состоят из антигена , антител и связанных с ними компонентнов комплемента С3, С4, C1q. При увеличении размеров комплексов , при избытке антигена и наличии в их структуре IgM , C1q – компонента комплемента , комплексы могут откладываться в периваскулярном пространстве и корковом слое почек , вызывая активацию комплемента и воспалительные процессы. Патологические реакции на иммунные комплексы обусловлены повышением скорости их образования над скоростью элиминации , дефицитом одного или нескольких компонентнов комплемента или функциональными дефектами фагоцитарной системы.  Определение циркулирующих иммунокомплексов позволяет оценить активность заболевания , особенно аутоиммунного. Пероксиды , представляяя собой свободные радикалы учавствуют в патогенезе многих заболеваний , от ревматоидного артирита до гепатита. Свободным радикалом считается молекула , содержащая один или более неспаренных электронов , напримре, супероксид – радикал , гидроксил – радикал. Свободные радикалы – активные молекулы способные вызывать гибель клеток. Для оценки состояния антиоксидантной активности определяют общую оксидантную активность , что позволяет в динамике  оценить эффективность антиоксидантной терапии. Хемокины – группа хемотаксических гепарин – связывающих молекул , в которую входят не менее 25 низкомолекулярных цитокинов , в частности, IL-8 , RANTES, MCP-I и др. Хемокины высвобождаются в очаге воспаления и связываются на поверхности эндотелия, взаимодействуя с сульфатными группами присутствующего на нем гепарина. Цитокины служат для межклеточной сигнализации при развитии воспалительного процесса. На начальной стадии воспаления местные тканевые клетки выделяют такие цитокины, как IL-1 , IL-6. При появлении в очаге воспаления лимфоцитов и мононуклеарных фагоцитов они активируясь под действием антигена , выделяют собственные цитокины ( IL-1, IL-4, TNF – альфа, INF- гамма)  , которые воздействуя на эндотелий местных сосудов усиливают клеточную миграцию. IL-8 способны оказывать хемотаксическое и активирующее действие на прибывающие клетки. Длительная циркуляция и гиперпродукция цитокинов – неблагоприятный прогностический признак. На пролиферацию эозинофилов влияют цитокины IL-3 и IL-5  , на пролиферацию Т – клеток – IL-2, на GM-CSF -IL-3.

Категория сообщения в блог: 

Источник

%d1%81%d0%be%d1%8dСкорость оседания эритроцитов (СОЭ) — неспецифический лабораторный показатель крови, отражающий соотношение фракций белков плазмы. Раньше этот показатель носил название «реакция оседания эритроцитов» (РОЭ). Это одно и то же. Несколько фактов из истории изучения этого вопроса. В 1918 г. Fahraeus обнаружил, что скорость оседания эритроцитов изменяется у беременных, в последующем он выявил, что СОЭ изменяется также при многих заболеваниях. Вестергрен в 1926 г. и Уинтроп 1935 г. разработали методы, которые и сейчас используют в клинической практике для определения СОЭ.

Повторю, что СОЭ — это высокочувствительный, но неспецифичный и нестабильный показатель воспаления. На результаты определения СОЭ влияют возраст, пол, уровень фибриногена, ревматоидного фактора (РФ), анемия и другие факторы. Эту фразу следует понимать так, что повышение СОЭ укажет на наличие какого-то воспаления в организме (инфекционного или нет), НО не ответит на вопрос — КАКОЕ ИМЕННО ВОСПАЛЕНИЕ И ГДЕ?

На сегодняшний день рекомендуется международный метод определения СОЭ по Вестергрену как наиболее чувствительный.

Верхняя граница СОЭ в норме по Вестергрену зависит от возраста и пола, рассчитывается по формуле:

  • для женщин СОЭ (мм/час)=(возраст в годах+10)/2;
  • для мужчин СОЭ (мм/час) = (возраст в годах)/2

Теперь коснусь значения определения СОЭ у ревматологических больных. СОЭ рекомендовано определять у всех пациентов при подозрении на ревматологическое заболевание. Да и вообще определение СОЭ входит в «золотой стандарт» обследования при подозрении на множество различных заболеваний, как ревматических, так и других (инфекционных и нет).

Увеличение СОЭ служит лабораторным классификационным критерием ревматоидного артрита.  Повышение СОЭ>50 мм/час является критерием гигантоклеточного артериита. Повышение СОЭ>35 мм/час является диагностическим признаком ревматической полимиалгии. Рекомендуемая кратность определения СОЭ при установленном диагнозе составляет 1 раз в 1-3 месяца.

%d1%81%d1%80%d0%b1C-реактивный белок (СРБ) – классический острофазовый белок плазмы крови, который рассматривается как наиболее чувствительный лабораторный маркер инфекции, воспаления и тканевого повреждения. В зависимости от цели исследования определение концентрации СРБ проводится классическими и высокочувствительными методами. Классические методы количественного анализа СРБ в сыворотке крови (радиальная иммунодиффузия, иммунотурбидиметрия и иммунонефелометрия)  предназначены для выявления повышенного уровня СРБ при остром воспалении и тканевом повреждении в пределах диапазона  концентраций 5-500 мг/л.

Высокочувствительный анализ СРБ  (вчСРБ), основанный на усилении аналитической чувствительности иммунохимических методов (иммуноферментного, иммунотурбидиметрического и иммунонефелометрического) в 10 и более раз с помощью специальных реагентов,  позволяет измерять концентрации СРБ ниже 5 мг/л и используется для оценки базального уровня вчСРБ и связанного с ним риска сердечно-сосудистых катастроф. Индивидуальная концентрация СРБ достаточно стабильна и не подвержена суточным изменениям.

Нормальный уровень СРБ у взрослых составляет менее 5 мг/л (однако значения, превышающие 3 мг/л, могут указывать на высокий риск развития сердечно-сосудистой патологии); у новорожденных (до 3 недель) – менее 4,1 мг/л; у детей – менее 2,8 мг/л.

Определение СРБ является полезным тестом для оценки активности патологического процесса у больных ревматическими заболеваниями. СРБ входит в критерии ревматоидного артрита.  Увеличение концентрации СРБ может говорить о развитии рентгенологических изменений, свидетельствующих о тяжелом деструктивном поражении суставов при раннем ревматоидном артрите. Рекомендуемая кратность определения СРБ составляет 1 раз в 1-3 месяц.

Источник

  Среди многочисленных маркеров воспаления, исследованных за последнее десятилетие, высокочувствительный С-реактивный белок является наиболее полно изученным в полном спектре популяций: от практически здоровых до пациентов с факторами риска ССЗ, стабильной стенокардией и ОКС. Физиологическая роль С-реактивного белка ясна не полностью, но его свойства относятся к неспецифическим защитным механизмам. В ответ на повреждение миокарда или местное воспаление, С-реактивный белок синтезируется гепатоцитами, стимулируемыми различными цитокинами [158, 159]. Кроме того, существуют некоторые данные, позволяющие предположить местное высвобождение С-реактивного белка из атеросклеротических бляшек. У больных с ИМ повышению уровня С-реактивного белка также способствует острый воспалительный процесс, индуцированный повреждением миокарда [119, 147].

Результаты нескольких эпидемиологических исследований показали, что повышения концентраций высокочувствительного С-реактивного белка в пределах референтного интервала связаны с повышенным риском развития ИМ, инсульта, поражения периферических артерий и ВСС у практически здоровых мужчин и женщин [160-163]. Эти данные сочетаются с данными фундаментальных исследований, подтверждающими, что воспаление играет важную роль в запуске и прогрессии атеросклероза. Однако в сравнительных исследованиях С-реактивный белок мало добавил к прогностическим данным, получаемым в результате проведения анализа традиционных факторов риска, включая ХС ЛПНП [164-167].

В приложении к ОКС результаты большого числа исследований с включением тысяч больных подтвердили, что изменения уровня высокочувствительного С-реактивного белка предопределяют развитие сердечно-сосудистых осложнений, развивающихся в краткосрочной, а также долгосрочной перспективе. Связь величины высокочувствительного С-реактивного белка с риском смерти у больных с ОКС оказалась независима от выбора стратегии лечения, и предикативная информация была инкрементна по отношению к шкале рисков TIMI и другим биохимическим маркерам. Существуют также твердые доказательства того, что среди больных с ОКС без повышения уровней тропонинов повышение уровня С-реактивного белка указывает на наличие риска [119, 168, 169]. Исследование FRISC подтвердило, что смертность связана с повышением уровня С-реактивного белка в момент знакового явления и что он продолжает расти в течение нескольких следующих лет [119, 168-174].

Поскольку С-реактивный белок не является “пассивным наблюдателем”, а играет активную роль в прогрессии атеросклероза, исследования уровня высокочувствительного С-реактивного белка могут быть полезными для таргетной (целенаправленной) терапии. И действительно, результаты нескольких исследований продемонстрировали, что эффект агрессивного снижения уровня липидов статинами наиболее эффективен для больных, у которых ЛПНП были снижены ниже 70 мг/л и высокочувствительный С-реактивный белок ниже 2 мг/л [175-177]. После терапии высокими дозами статинов внутрисосудистое УЗИ может обнаружить даже регрессию бляшек, с наибольшим их уменьшением у тех пациентов, у кого уровни и ЛПНП, и С-реактивного белка были ниже средних значений [178]. Следовательно, существуют значимые доказательства того, что анализ высокочувствительного С-реактивного белка должен применяться для выявления тех пациентов, для кого применение ингибиторов ГМГ-КоА-редуктазы может быть наиболее благотворным.

Точно так же, как в случае классификации пациентов со стабильной стенокардией или в рамках первичной профилактики, значения концентрации высокочувствительного С-реактивного белка ниже 1 мг/дл выявляются у больных с низкой степенью риска, в пределах 1-3 мг/дл – у больных с умеренной степенью риска и выше 3 мг/дл – у больных высокого риска. Для оценки рисков в острой фазе ОКС в прогностических целях должно использоваться значение верхней границы, равное 10 мг/л [179].

Источник: Кэмм А. Джон, Люшер Томас Ф., Серруис П.В., &laquoБолезни сердца и сосудов.Часть 4 (Главы 16-19)» 2011

А так же в разделе «  МАРКЕРЫ ВОСПАЛЕНИЯ »

  •   ЖАЛОБЫ И АНАМНЕЗ
  •   ОСМОТР
  •   ЭЛЕКТРОКАРДИОГРАФИЯ
  •   БИОХИМИЧЕСКИЕ МАРКЕРЫ
  •   МАРКЕРЫ НЕКРОЗА МИОКАРДА
  •   БИОХИМИЧЕСКАЯ ДИАГНОСТИКА ИНФАРКТА МИОКАРДА
  •   ТРОПОНИНЫ И СТРАТИФИКАЦИЯ РИСКОВ
  •   ОСОБЕННОСТИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ТРОПОНИНОВ
  •   ВНЕСЕРДЕЧНЫЕ ПРИЧИНЫ ПОВЫШЕНИЯ УРОВНЯ СЕРДЕЧНЫХ ТРОПОНИНОВ
  •   МАРКЕРЫ МИОКАРДИАЛЬНОГО СТРЕССА (НАТРИЙУРЕТИЧЕСКИЕ ПЕПТИДЫ)
  •   АНАЛИЗ “НА МЕСТЕ”
  •   КОМПЛЕКСНЫЙ БИОХИМИЧЕСКИЙ АНАЛИЗ В КЛИНИЧЕСКОЙ ПРАКТИКЕ
  •   НОВЫЕ БИОХИМИЧЕСКИЕ МАРКЕРЫ
  •   МЕТОДЫ ВИЗУАЛИЗАЦИИ ПРИ ОСТРОМ КОРОНАРНОМ СИНДРОМЕ
  •   СТРАТИФИКАЦИЯ РИСКА ПРИ ОСТРОМ КОРОНАРНОМ СИНДРОМЕ БЕЗ ПОДЪЕМА СЕГМЕНТА SТ
  •   СТРАТИФИКАЦИЯ РИСКА ПРИ ОСТРОМ КОРОНАРНОМ СИНДРОМЕ С ПОДЪЕМОМ СЕГМЕНТА SТ
  •   ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА

Источник