Негативными реактантами острой фазы воспаления

Характерным для ООФ является увеличение синтеза в организме и количества в плазме крови белков острой фазы, относящихся к иммуномодуляторам и медиаторам воспаления. Белки острой фазы – это плазменные протеины, образующиеся преимущественно в печени и обладающие как прямым, так и опосредованным бактерицидным и/или бактериостатическим действием. Кроме того, они являются хемоатрактантами, неспецифическими опсонинами и ингибиторами первичной альтерации. Эти белки относят к надежным маркёрам острого воспаления.
Белки острой фазы, концентрация которых в плазме увеличивается, называются позитивными белками острой фазы (фибриноген, сывороточный амилоид А и Р, С-реактивный белок), а концентрация которых уменьшается называются негативными белками острой фазы (преальбумин, альбумин, трансферин).
Содержание различных белков острой фазы в течение воспаления как минимум изменяется на 25% в ту или иную сторону.
Концентрация большинства позитивных белков острой фазы увеличивается на 50% и несколько выше, но уровни некоторых из них (например, сывороточного амилоида А (САА), С-реактивного белка (СРБ), сывороточного амилоида Р (САР) вырастают в 1000 раз.
Содержание так называемых негативных белков острой фазы уменьшается в плазме на протяжении процесса воспаления, чтобы позволить печени увеличить синтез индуцированных белков острой фазы.
Основные белки острой фазы приведены в таблице 15-2.
Основными стимуляторами продукции белков острой фазы являются воспалительные цитокины, продуцируемые при воспалении: ИЛ-6, ИЛ-1β, ФНО-, интерферон-γ, транформирующий фактор роста β и, возможно, ИЛ-8. Эти цитокины, распространяясь с кровью, стимулируют гепатоциты печени, к синтезу и секреции белков острой фазы. Этот ответ обеспечиваетраннюю защиту и дает возможность организму распознавать чужеродные субстанции при инфекционном процессе, предваряя реализацию полноценного иммунного ответа.
В широком спектре системных реакций при воспалении выявляются два основных физиологических ответа, которые рассматриваются как ассоциированные собственно с острым воспалением. Первый включает изменение температуры, заданной гипоталамусом, с развитием фебрильного ответа (лихорадки). Второй включает в себя изменения метаболизма и генной регуляции в печени. Считается, что три цитокина, выделяющиеся в месте тканевого повреждения – ИЛ-1, ИЛ-6, ФНО, регулируют фебрильный ответ, как защитный механизм.
Таблица 15-2
Основные группы и виды белков острой фазы
Группа белков острой фазы | Виды белков острой фазы |
Позитивные | |
Основные | Сывороточный амилоид А, С-реактиный белок, сывороточный амилоид Р |
Компоненты системы комплемента | С2, С3, С4, С5, С9, В, ингибитор С1, С4-связывающий протеин |
Факторы свертывания крови | Фибриноген, фактор Виллебранда |
Ингибиторы протеиназ | 1-антитрипсин, 1-антихимотрипсин, 2-антиплазмин, кофактор гепарина II, ингибитор активатора плазминогена I |
Металл-связывающие белки | Гаптоглобин, гемопексин, церулоплазмин, магниевая супероксиддисмутаза |
Другие белки | α1 кислый гликопротеин, гемоксигеназа, манннозосвязывающий белок, лейкоцитарный протеин I, липополисахарид-связывающий белок |
Негативные | Альбумин, преальбумин, трансферин, апоАI, апоAII, 2-НS-гликопротеин, ингибитор интер--трипсин, гликопротеин, богатый гистидином |
Эти цитокины опосредуют лихорадку через индукцию синтеза простагландина Е2. В то же самое время ИЛ-1 и ИЛ-6 могут действовать на гипофизарно-надпочечниковую ось, вызывая синтез АКТГ и индуцируя продукцию кортизола, которые по механизму отрицательной обратной связи ингибируют экспрессию цитокиновых генов.
Одним важным аспектом ООФ является то, что данный ответ представляет динамический гомеостатический процесс, в который в дополнение к сердечно-сосудистой, иммунной, эндокринной и центральной нервной системам вовлечены и другие основные системы организма. Обычно ООФ длится несколько дней. Однако, в случае хронического или повторного воспаления его продолжительность изменяется, и ООФ может вносить вклад в расширение и углубление воспаления и развитие осложнений, например, сердечно-сосудистых болезней или амилоидоза, или др.
Другим важным аспектом ООФ является значимое изменение биосинтетических функций печени. В норме печень синтезирует определенный набор плазменных белков, многие из которых выполняют важные функции. Содержание многих из этих белков увеличивается при ООФ, поэтому их называю белки острой фазы. Хотя большинство белков острой фазы продуцируются гепатоцитами, некоторые выделяются другими клетками, например, моноцитами, эндотелиоцитами, фибробластами и адипоцитами.
В острой фазе воспаления повышается синтез более чем 40 белков, обладающих, в зависимости от природы стимула, провоспалительными или противовоспалительными свойствами. Белки острой фазы воспаления играют важную роль в репарации тканей, связывают протеолитические ферменты, регулируют клеточный и гуморальный иммунитет. Увеличение концентрации реактантов острой фазы является приспособительной реакцией, направленной на ликвидацию патологического процесса.
В частности, установлено, что компоненты системы комплемента участвуют не только в процессе накопления микро- и макрофагов в месте воспаления, но и в уничтожении патогенных микроорганизмов. С-реактивный белок (основной белок острой фазы воспаления) связывает различные патогенные факторы и продукты распада поврежденных клеток, способствует опсонизации этих веществ и активирует систему комплемента. С этой точки зрения, повышение синтеза белков острой фазы под влиянием ИЛ-6 можно считать защитным механизмом, ограничивающим повреждение тканей.
Многочисленные клинико-экспериментальные исследования показали важную роль белков острой фазы в адаптации организма. Обладая широким спектром биологической активности, белки острой фазы участвуют в адаптационных реакциях макроорганизма, обеспечивая многие его гомеостатические функции (табл. 15-3).
Белки острой фазы имеют широкий спектр активности, способствующий развитию защиты организма-хозяина. В частности, они могут прямо нейтрализовывать флогогенные вещества; помогают минимизировать масштабы локального тканевого повреждения; способствуют очищению очага от продуктов клеточно-тканевого распада и чужеродных веществ; восстанавливают поврежденную ткань; принимают участие в активизации репаративной регенерации поврежденных тканей. Следует отметить, что факторы свертывания крови, например фибриноген, также играют существенную роль в заживлении раны.
Таблица 15- 3
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
Некоторые гуморальные реакции врожденного иммунитета по своему назначению аналогичны реакциям адаптивного иммунитета и могут рассматриваться как их эволюционные предшественники. Такие реакции врожденного иммунитета имеют преимущество перед адаптивным иммунитетом в быстроте развития, однако недостаток их заключается в отсутствии специфичности в отношении антигенов. Пару сходных по результатам реакций врожденного и адаптивного иммунитета мы рассмотрели выше в разделе, посвященном комплементу (альтернативная и классическая активация комплемента). Другой пример будет рассмотрен в данном разделе: белки острой фазы в ускоренном и упрощенном варианте воспроизводят некоторые эффекты антител.
Белки (реактанты) острой фазы представляют группу протеинов, секре- тируемых гепатоцитами. При воспалении продукция белков острой фазы изменяется. При усилении синтеза белки называют положительными, а при понижении синтеза – отрицательными реактантнами острой фазы воспаления. Перечень белков острой фазы, относящихся к этим двум группам, представлен в табл. 2.25. Динамика и выраженность изменений сывороточной концентрации различных белков острой фазы при развитии воспаления неодинакова: концентарция С-реактивного белка и сывороточного амилоида Р возрастает очень сильно (в десятки тысяч раз) – быстро и кратковременно (практически нормализуется к концу 1-й недели); уровни гаптоглобина и фибриногена возрастают слабее (в сотни раз) соответственно на 2-й и 3-й неделях воспалительной реакции. В данной главе будут рассмотрены только положительные реактанты, участвующие в иммунных процессах.
Таблица 2.25. Положительные и отрицательные реактанты острой фазы у человека
Группа белков | Положительные реактанты острой фазы | Отрицательные реактанты острой фазы |
Пентраксины | С-реактивный белок, сывороточный амилоид А, пентраксин 3 | Нет |
Транспортные белки | Маннозасвязывающий белок, гаптогло- бин, гемопексин, церулоплазмин, орозо- мукоид, преальбумин, липокалины | Трансферрин, ретинолсвязывающий белок |
Окончание табл. 2.25
Группа белков | Положительные реактанты острой фазы | Отрицательные реактанты острой фазы |
Протеазы | Трипсиноген, эластаза, катепсины, гранзимы, триптазы, химазы, металлопротеиназы | Нет |
Ингибиторы протеаз | а2-макроглобулин, агантитрипсин, агантихимотрипсин | Нет |
Компоненты комплемента | Cl-ингибитор, компоненты С2, С3, С4, фактор В | Пропердин |
Факторы свертывания крови | Фибриноген, протромбин, фактор VIII, плазминоген | Фактор XII |
Прочие белки | Ангиотензиноген, фибронектин, про- кальцитонин, тенасцин С, ЛПС-связы- вающий белок | Альбумин, липопротеиды низкой и очень низкой плотности |
Согласно выполняемым функциям выделяют несколько групп белков острой фазы. К транспортным белкам относят преальбумин, альбумин, орозомукоид, липокалины, гаптоглобин, трансферрин, маннозасвязываю- щий и ретинолсвязывающий белки и т.д. Они играют роль переносчиков метаболитов, ионов металлов, физиологически активных факторов. Роль факторов этой группы существенно возрастает и качественно изменяется при воспалении. Другую группу образуют протеазы (трипсиноген, эластаза, катепсины, гранзимы, триптазы, химазы, металлопротеиназы), активация которых необходима для формирования многих медиаторов воспаления, а также для осуществления эффекторных функций, в частности киллерной. Активация протеаз (трипсина, химотрипсина, эластазы, металлопротеиназ) уравновешивается накоплением их ингибиторов. а2-Макроглобулин участвует в подавлении активности протеаз разных групп. Помимо перечисленных, к белкам острой фазы относят факторы коагуляции и фибринолиза, а также белки межклеточного матрикса (например, коллагены, эластины, фибронектин) и даже белки системы комплемента.
Пентраксины
Наиболее полно проявляют свойства реактантов острой фазы белки семейства пентраксинов: в первые 2-3 сут развития воспаления их концентрация в крови повышается на 4 порядка.
Основа для выделения этого семейства белков – структурные особенности модуля, являющегося их обязательной составной частью. Пентраксиновый модуль представляет кольцевидный гомопентамер. Он состоит из 5 нековалентно связанных одинаковых субъединиц (рис. 2.43). Субъединица образована 206 аминокислотными остатками и имеет молекулярную массу около 20-23 кДа. Структура субъединицы стабилизируется дисульфидной связью, придающей ей форму глобулы, в которой преобладают р-слоистые структуры (примерно 50%), соединенные а-спирализированными участками (12%). Сердцевину каждого мономера образуют 2 антипараллельных p-слоя. Такие структуры обозначают термином «желатиновый рулет» (jelly roll).
Рис. 2.43. Строение представителя семейства пентраксинов C-реактивного белка. Пять доменов объединены нековалентными связями в кольцевую структуру и формируют молекулу C-реактивного белка. Лигандсвязывающие сайты содержат по 2 иона кальция
Выделяют 2 группы пентраксинов – короткие и длинные (рис. 2.44). К коротким, содержащим только пентраксиновые домены, относят 2 ост- рофазых реактанта – С-реактивный белок и сывороточный амилоид Р. К длинным пентраксинам относят белки, содержащие С-концевой пентрак- синовый домен и N-концевой домен (тоже пятичленный, но имеющий другую структуру). Наиболее изучен в этой группе белок РТХ3 (пентраксин 3).
С-реактивный белок и сывороточный амилоид Р образуются и секрети- руются гепатоцитами. Основной индуктор их синтеза – IL-6. Белок PTX3 вырабатывают миелоидные (макрофаги, дендритные клетки), эпителиальные клетки и фибробласты в ответ на стимуляцию через TLR, а также под действием провоспалительных цитокинов (например, IL-1p, TNFa). Концентрация пентраксинов в сыворотке резко возрастает при воспалении: С-реактивного белка и сывороточного амилоида Р – с 1 мкг/мл до 1-2 мг/мл (т.е. в 1000 раз), РТХ3 – с 25 до 200-800 нг/мл. Пик концентрации достигается через 6-8 ч после индукции воспаления.
Для пентраксинов характерна способность связываться с самыми разнообразными молекулами. С-реактивный белок был впервые идентифи-
Рис. 2.44. Происхождение и функции пентраксинов: ДК – дендритные клетки; ЭК – эндотелиальные клетки; PAMP – патогенассоциированные молекулярные паттерны («образы патогенности»)
цирован благодаря его способности связывать полисахарид С (Streptococcus pneumoniae), что и определило его название. Пентраксины взаимодействуют и с множеством других молекул: C1q, бактериальными полисахаридами, фосфорилхолином, гистонами, ДНК, полиэлектролитами, цитокинами, белками межклеточного матрикса, сывороточными липопротеинами, компонентами комплемента, друг с другом, а также с ионами Са2+ и других металлов. Для всех рассматриваемых пентраксинов существуют высокоаффинные рецепторы на миелоидных, лимфоидных, эпителиальных и других клетках. Кроме того, эта группа белков острой фазы обладает достаточно высоким сродством к таким рецепторам, как FcyRI и FcyRII.
Многочисленность молекул, с которыми взаимодействуют пентраксины, определяет широкое разнообразие их функций. Распознавание и связывание пентраксинами PAMP дает основание рассматривать их как вариант растворимых патогенраспознающих рецепторов (см. раздел 2.2). К наиболее важным функциям пентраксинов относят их участие в реакциях врожденного иммунитета в качестве факторов, запускающих активацию комплемента через C1q и участвующих в опсонизации микроорганизмов. Комплемент- активирующая и опсонизирующая способность пентраксинов делает их своеобразными «протоантителами», частично выполняющими функции антител на начальном этапе иммунного ответа, когда истинные адаптивные антитела еще не успели выработаться. Роль пентраксинов во врожденном иммунитете заключается также в активации нейтрофилов и моноцитов/ макрофагов, регуляции синтеза цитокинов и проявлении хемотаксической активности по отношению к нейтрофилам.
Помимо участия в реакциях врожденного иммунитета пентраксины регулируют функции межклеточного матрикса при воспалении, контроле апоптоза и элиминации апоптотических клеток.
Источник