Первичное и вторичное повреждение при воспалении

(Лекция № IX) Часть 1.

1. Понятие о воспалении.

2. Первичное и вторичное повреждение.

3. Нарушения обмена веществ при воспалении.

4. Медиаторы воспаления.

5. Стадии сосудистой реакции при воспалении.

6. Экссудат, его виды и функции.

Воспаление (inflammatio) – это сложная местная защитно-приспособительная реакция соединительной ткани, сосудов и нервной системы целостного организма, выработанная в процессе эволюции у высокоорганизованных существ в ответ на повреждение, направлена на изоляцию и удаление повреждающего агента и ликвидацию последствий повреждения. Это типовой патологический процесс с изменением обмена веществ и кровообращения, фагоцитозом и пролиферацией. В основе любого воспаления лежит: 1) повреждение и 2) защитные реакции. Способность противостоять повреждению, способность к заживлению ран, к восстановлению по крайней мере некоторых утраченных тканей – важнейшее свойство живых организмов. И эти свойства определяются тем, что здоровый организм немедленно отвечает на повреждение рядом общих и местных реакций. Общие реакции обусловлены более или менее выраженными изменениями функционального состояния нервной, эндокринной и иммунной систем организма. Они сопровождаются изменениями реактивности всего организма в целом. Местные реакции, возникающие в зоне повреждения и в непосредственной близости от нее, характеризуют процесс, называемый воспалением.

Биологический смысл воспаления в том, чтобы ограничить, задержать, остановить развитие повреждения и далее, если это удастся, расчистить зону повреждения от продуктов распада и разрушенных тканей, подготовив этим самым почву для собственно восстановительных процессов.

В 18 веке Цельс описал 4 основных клинических признака воспаления: краснота (rubor), припухлость (tumor), боль (dolor) и повышение температуры (calor). Гален добавил пятый признак – нарушение функции (functio laesa). Rubor, tumor, dolor, calor et functio laesa symptomata inflammationis sunt.

Причины воспаления : а) физические факторы, б) химические факторы, в) биологические факторы, г) расстройства кровообращения, д) опухолевый рост, е) иммунные реакции.

Различаются 4 стадии:

1. альтерация (alteratio),

2. экссудация (exsudatio),

3. эмиграция (emigratio),

4. пролиферация (proliferatio).

Альтерация– это главное звено, по сути – пусковой механизм. Альтерация может быть первичная или вторичная. Первичная альтерация развивается сразу после воздействия повреждающего фактора и формируется на уровне функционального элемента органа. Первичная альтерация может проявляться специфическими изменениями, а также неспецифическими изменениями, которые развиваются стереотипно независимо от свойств и особенностей действия патогенного фактора. Эти изменения связаны:

1) с повреждением мембранных структур,

2) с повреждением мембраны митохондрий,

3) с повреждением лизосом.

Нарушения структуры мембраны клеток ведет к нарушению клеточных насосов. Отсюда теряется способность клетки адекватно реагировать изменением собственного метаболизма на изменения гомеостаза окружающей среды, изменяются ферментативные системы и митохондрии. В клетке накапливаются недоокисленные продукты обмена: пировиноградная, молочная и янтарная кислоты. Первоначально эти изменения являются обратимыми и могут исчезнуть, если этиологический фактор прекратил свое действие. Клетка полностью восстанавливает свои функции. Если же повреждение продолжается и в процесс вовлекаются лизосомы, то изменения носят необратимый характер. Поэтому лизосомы называют “стартовыми площадками воспаления” и именно с них начинается формирование вторичной альтерации.

Вторичная альтерация обусловлена повреждающим действием лизосомальных ферментов. Усиливаются процессы гликолиза, липолиза и протеолиза. В результате распада белков в тканях увеличивается количество полипептидов и аминокислот; при распаде жиров возрастают жирные кислоты; нарушения углеводного обмена ведет к накоплению молочной кислоты. Все это вызывает физико-химические нарушения в тканях и развиваются гиперосмия с повышением концентрации ионов K+, Na+, Ca2+, Cl-; гиперонкия – повышение количества белковых молекул из-за распада крупных на более мелкие; гипериония H+ – в связи с диссоциацией большого количества кислот с высвобождением ионов водорода. И как следствие всего этого – развивается метаболический ацидоз в связи с повышением кислых продуктов обмена. В процесс вовлекаются все компоненты ткани и альтерация носит необратимый характер, итогом которого будет аутолиз клеток. Образуются вещества, которые могут не только усиливать, но и ослаблять альтерацию, оказывая влияние на различные компоненты воспаления, т.е. регулируя микроциркуляцию, экссудацию, эмиграцию лейкоцитов и пролиферацию клеток соединительной ткани.

Эти биологически активные вещества называются медиаторы или модуляторы воспаления. Медиаторы воспаления различаются

?по времени их активности: ранние и поздние;

? по точке приложения: влияющие на сосуды или на клетки и

? по происхождению: гуморальные (плазменные) и клеточные.

Источниками медиаторов воспаления могут быть белки крови и межклеточной жидкости, все клетки крови, клетки соединительной ткани, нервные клетки, неклеточные элементы соединительной ткани.

Различают преформированные и вновь образующиеся медиаторы. Преформированные медиаторы синтезируются постоянно без всякого повреждения, накапливаются в специальных хранилищах и высвобождаются немедленно после повреждения (например – гистамин). Синтез других медиаторов начинается после повреждения, как ответная мера. Такие медиаторы называются вновь образующимися (например простагландины).

Повреждение ткани сопровождается активацией специальных протеолитических систем крови, что ведет к появлению в очаге воспаления различных пептидов, выполняющих роль медиаторов воспаления. Вазоактивные кинины образуются так же при активации фибринолитической системы активированным фактором Хагемана, который превращает циркулирующий в крови неактивный плазминоген в активный фермент плазмин. Плазмин расщепляет фибрин (а своевременное переваривание фибрина необходимо для успешного заживления ран). При этом образуются пептиды, способные расширять сосуды и поддерживать увеличенную сосудистую проницаемость. Плазмин активирует систему комплемента.

Читайте также:  Воспаление горла у малыша

Система комплемента, включающая около 20 различных белков, активируется кроме фактора Хагемана еще двумя путями: классическим – это комплекс антиген-антитело и альтернативным – это липополисахариды микробных клеток. В воспалении участвуют С3а и С5а компоненты комплемента, которые опсонизируют и лизируют бактерии, вирусы и патологически измененные собственные клетки; способствуют дегрануляции тучных клеток и базофилов с высвобождением медиаторов. Компоненты комплемента вызывают также адгезию, агрегацию и дегрануляцию клеток крови, выход лизосомальных ферментов, образование свободных радикалов, ИЛ-1, стимулируют хемотаксис, лейкопоэз и синтез иммуноглобулинов.

Медиаторы плазменного и клеточного происхождения взаимосвязаны и действуют по принципу аутокаталитической реакции с обратной связью и взаимным усилением.

Нарушение микроциркуляции в очаге воспаления характеризуется изменением тонуса микроциркуляторных сосудов, усиленным током жидкой части крови за пределы сосуда (т.е. экссудацией) и выходом форменных элементов крови (т.е. эмиграцией).

Для сосудистой реакции характерны 4 стадии :

1) кратковременный спазм сосудов,

2) артериальная гиперемия,

3) венозная гиперемия,

4) стаз.

Спазм сосудов возникает при действии повреждающего агента на ткани и связан с тем, что вазоконстрикторы возбуждаются первыми, поскольку они чувствительнее вазодилятаторов. Спазм длится до 40 секунд и быстро сменяется артериальной гиперемией.

Артериальная гиперемия формируется следующими тремя путями:

? как результат паралича вазоконстрикторов;

? как результат воздействия медиаторов с сосудорасширяющей активностью;

? как результат реализации аксон-рефлекса.

Расслабляются прекапиллярные сфинктеры, увеличивается число функционирующих капилляров и кровоток через сосуды поврежденного участка может в десятки раз превышать таковой неповрежденной ткани. Расширение микроциркуляторных сосудов, увеличение количества функционирующих капилляров и повышенное кровенаполнение органа определяет первый макроскопический признак воспаления – покраснение. Если воспаление развивается в коже, температура которой ниже температуры притекающей крови, то температура воспаленного участка повышается – возникает жар. Поскольку в первое время после повреждения линейная и объемная скорость кровотока в участке воспаления достаточно велики, то оттекающая из очага воспаления кровь содержит большее количество кислорода и меньшее количество восстановленного гемоглобина и поэтому имеет яркокрасную окраску. Артериальная гиперемия при воспалении сохраняется недолго (от 15 минут до часа) и всегда переходит в венозную гиперемию, при которой увеличенное кровенаполнение органа сочетается с замедлением и даже полным прекращением капиллярного кровотока.

Венозная гиперемия начинается с максимального расширения прекапиллярных сфинктеров, которые становятся нечувствительными к вазоконстрикторным стимулам и венозный отток затрудняется. После этого замедляется ток крови в капиллярах и приносящих артериолах. Главной причиной развития венозной гиперемии является экссудация – выход жидкой части крови из микроциркуляторного русла в окружающую ткань. Экссудация сопровождается повышением вязкости крови, периферическое сопротивление кровотоку возрастает, скорость тока крови падает. Кроме того, экссудат сдавливает венозные сосуды, что затрудняет венозный отток и также усиливает венозную гиперемию. Развитию венозной гиперемии способствует набухание в кислой среде форменных элементов крови, сгущение крови, нарушение десмосом, краевое стояние лейкоцитов, образование микротромбов. Кровоток постепенно замедляется и приобретает новые качественные особенности из-за повышения гидростатического давления в сосудах: кровь начинает двигаться толчкообразно, когда в момент систолы сердца кровь продвигается вперед, а в момент диастолы кровь останавливается. При дальнейшем повышении гидростатического давления кровь в систолу продвигается вперед, а в момент диастолы возвращается обратно – т.е.возникает маятникообразное движение. Толчкообразное и маятникообразное движение крови определяет возникновение пульсирующей боли. Постепенно экссудация вызывает развитие стаза – обычное явление при воспалении.

Как правило, стаз возникает в отдельных сосудах венозной части микроциркуляторного русла из-за резкого повышения ее проницаемости. При этом жидкая часть крови быстро переходит во внесосудистое пространство и сосуд остается заполненным массой плотноприлежащих друг к другу форменных элементов крови. Высокая вязкость такой массы делает невозможным продвижение ее по сосудам и возникает стаз. Эритроциты образуют “монетные столбики”, границы между ними постепенно стираются и образуется сплошная масса в просвете сосуда – сладж (от англ. sludge – тина, грязь).

Механизмы экссудации: экссудация при воспалении обусловлена прежде всего повышением проницаемости микроциркуляторного русла для белка в следствие существенного изменения сосудистого эндотелия. Изменение свойств эндотелиальных клеток микроциркуляторных сосудов – это главная, но не единственная причина экссудации при воспалении. Образованию различного экссудата способствует рост гидростатического давления внутри микроциркуляторных сосудов, связанный с расширением приносящих артериол, увеличение осмотического давления интерстициальной жидкости, обусловленное накоплением во внесосудистом пространстве осмотически активных продуктов распада ткани. Более значительно процесс экссудации выражен в венулах и капиллярах. Экссудация формирует четвертый признак воспаления – припухлость (tumor).

Состав экссудата (exsudatum) – это жидкая часть крови, форменные элементы крови и разрушенные ткани.

По составу экссудата выделяют 5 видов воспаления:

? серозный;

? катаральный (слизистый);

? фибринозный;

? геморрагический;

? гнойный;

? ихорозный.

Функции экссудата – в результате экссудации происходит разбавление концентрации бактериальных и других токсинов и разрушение их поступающими из плазмы крови протеолитическими ферментами. В ходе экссудации в очаг воспаления поступают сывороточные антитела, которые нейтрализуют бактериальные токсины и опсонизируют бактерии. Воспалительная гиперемия обеспечивает переход в очаг воспаления лейкоцитов крови, способствует фагоцитозу. Фибриноген экссудата превращается в фибрин, нити которого создают структуру, облегчающую переход лейкоцитов в рану. Фибрин играет важную роль в процессе заживления ран.

Читайте также:  Воспаление горла при стафилококке

Однако экссудация имеет и отрицательные последствия – отек тканей может привести к удушью или угрожающему для жизни повышению внутричерепного давления. Нарушения микроциркуляции способны привести к ишемическому повреждению тканей. Излишнее отложение фибрина может препятствовать последующему восстановлению поврежденной ткани и способствовать избыточному разрастанию соединительной ткани. Поэтому врач должен осуществлять эффективный контроль за развитием экссудации.

Источник

ВОСПАЛЕНИЕ

• Типовой патологический процесс.

• Возникает в ответ на действие патогенного (флогогенного) фактора.

• Характеризуется развитием как патогенных, так и адаптивных реакций организма.

• Направлен на локализацию, уничтожение и удаление из организма флогогенного фактора, а также на ликвидацию последствий его действия.

Этиология

Воспаление — результат взаимодействия организма с патогенными факторами различного генеза (причинами воспаления) в определенных условиях.

Природа флогогенного фактора может быть физической, химической и биологической.

Физические факторы. Наиболее частые физические факторы: механическая травма тканей, чрезмерно высокая или низкая температура, воздействие электрического тока или лучистой энергии, внедрение в ткань инородного тела и т.п.

Химические факторы: экзо‑ и эндогенные органические или неорганические кислоты и щелочи в высоких концентрациях; избыток в тканях органических соединений: продуктов метаболизма, экскретов, компонентов биологических жидкостей (молочной, пировиноградной и других кислот, а также их солей; жёлчи; мочи; мочевины; солей кальция и др.); ЛС, вводимые в ткани (в частности — гипертонические растворы хлористого кальция, хлорида калия, натрия, карбонатов; камфора; некоторые витамины) и др.

Биологические агенты — одна из наиболее распространённых причин воспаления: инфекционные (вирусы, риккетсии, бактерии, а также одно‑ и многоклеточные паразиты, грибы); иммуноаллергические (комплексы Аг‑АТ; антигенно‑ и генетически чужеродные структуры, например, денатурированные белки или погибшие участки ткани; инфицированные вирусом или опухолевые клетки; аутоантитела); токсины насекомых, животных, растений.

МЕХАНИЗМЫ РАЗВИТИЯ ВОСПАЛЕНИЯ

Возникнув под влиянием повреждающего фактора, воспаление характеризуется развитием, как правило, более или менее стереотипного и динамичного комплекса изменений в очаге воспаления и в организме в целом. Вместе с тем (учитывая, что воспаление в большинстве случаев является звеном патогенеза разных болезней) характер и динамика воспалительных изменений при разных заболеваниях и у различных пациентов имеют специфику.

Выделяют следующие компоненты воспаления: альтерация, сосудистые реакции и изменения крово‑ и лимфообращения, экссудация, эмиграция лейкоцитов и выход других форменных элементов крови в ткань, фагоцитоз, пролиферация (рис. 5–2).

Альтерация — первое и непосредственное следствие повреждающего действия флогогенного фактора и инициальное звено механизма развития воспаления.

Альтерация, как первичная, так и вторичная, — сложный комплекс изменений.

Первичная и вторичная альтерация

Зона первичной альтерации

Причина формирования: флогогенный фактор, действующий на ткань.

Локализация: место прямого контакта причины воспаления с тканью (эта зона — эпицентр очага воспаления).

Основные механизмы

Повреждение мембранных структур и внутриклеточных ферментов, а также структур межклеточного вещества.

Расстройства энергетического обеспечения функций и пластических процессов в повреждённой ткани.

Нарушения трансмембранного переноса и градиента ионов, соотношения их между собой, содержания жидкости внутри и за пределами клетки и в зоне альтерации в целом.

Проявления

Расстройства функции повреждённых, но ещё жизнеспособных участков ткани вне зоны некроза.

Некроз.

Значительные физико‑химические изменения.

Различные формы дистрофии.

Время начала развития вышеуказанных изменений колеблется в широком диапазоне и определяется особенностями флогогенного фактора, ткани или органа, подвергшегося его воздействию; реактивности организма. Тем не менее, первые изменения выявляются сразу после воздействия причины воспаления на ткань.

Зона вторичной альтерации

Причины

• Эффекты флогогенного агента (хотя за пределами эпицентра очага воспаления эффективность его патогенного воздействия значительно ниже).

• Влияние факторов, вторично формирующихся в зоне первичной альтерации в связи с образованием медиаторов воспаления, развитием метаболических, физико‑химических и дистрофических изменений.

Локализация

• Частично в месте контакта флогогенного агента с тканью (там, где сила его воздействия была минимальной).

• В основном — вокруг области первичной альтерации. Обычно площадь этой зоны значительно больше площади первичной.

Механизмы развития

• Расстройства местных механизмов нервной регуляции в связи с повреждением тел нейронов, нервных стволов и/или их окончаний, синтеза, накопления и высвобождения из них нейромедиаторов.

• Нарушение выброса нейромедиаторов (норадреналина, ацетилхолина и др.) из нервных терминалей симпатической и парасимпатической системы в очаге воспаления и стадийные изменения чувствительности тканей к нейромедиаторам в этом очаге.

• Расстройства аксонного транспорта трофических и пластических факторов (углеводов, липидов, белков, адениннуклеотидов, нуклеиновых кислот, БАВ, ионов и других агентов) от тел нейронов к соматическим клеткам.

• Стадийные изменения тонуса сосудов микроциркуляторного русла и в связи с этим — расстройства кровообращения

• БАВ, поступающие в зону вторичной альтерации из зоны первичной альтерации, а также образуются за пределами очага воспаления.

В совокупности эти изменения обусловливают расстройства обмена веществ, значительные физико‑химические сдвиги в зоне вторичной альтерации, развитие различных видов дистрофий и даже — некроза.

Читайте также:  Насморк воспаление как лечить

Проявления

Изменения структуры клеток и межклеточного вещества тканей, обычно обратимые (например, признаки повреждения клеток, архитектуры ткани и др.)

Расстройства метаболизма (выражается различными отклонениями в обмене веществ и развитии).

Умеренные отклонения физико‑химических параметров (например, рН, осмоляльности жидкости, температуры тканей, трансмембранного распределения ионов).

Обратимые изменения функции тканей и органов.

Изменения обмена веществ в очаге воспаления. Значение повреждения мембран клетки и ее органелл в патогенезе нарушения обмена веществ. Физико-химические изменения в очаге воспаления, их патогенез, последствия.

Причины изменения структуры клеток и других гистологических элементов:

• в течение первых минут — прямое действие флогогенного фактора;

• на более поздних этапах и дополнительно к прямому эффекту флогогенного фактора — влияние вторичных причин: метаболических, физико‑химических, микроциркуляторных и регуляторных расстройств.

Основные механизмы морфологических изменений:

• нарушения процессов энергетического обеспечения клеток;

• повреждение мембранного аппарата и ферментных систем;

• дисбаланс ионов и воды;

• нарушения местных (клеточных и органно‑тканевых) механизмов регуляции.

Проявления

• Развивающиеся в тканях изменения весьма разнообразны: от минимальных структурных отклонений до деструкции и некроза.

• Структурные изменения наблюдаются как в паренхиматозных клетках, так и в строме тканей и органов.

• Существенную роль в потенцировании повреждения клеточных и неклеточных структур играют высвобождающиеся из лизосом и активирующиеся в очаге воспаления гидролазы: протеазы, липазы, фосфолипазы, эластазы, коллагеназы и другие ферменты. Источником их являются как клетки самой повреждённой ткани, так и находящиеся в ней лейкоциты, а при септическом воспалении — и микроорганизмы.

• Для клеток при воспалительной альтерации характерны изменения в цитозоле, а также повреждение плазмолеммы и мембран органелл — митохондрий, лизосом, эндоплазматической сети, комплекса Гольджи и других. В связи с этим меняется их форма, размеры, число, а также функции органелл и клетки в целом.

Изменения обмена веществ

В очаге воспаления наблюдаются закономерные фазные изменения метаболизма. Их причины: действие флогогенного фактора и вторичные расстройства в ткани, выражающиеся в перестройке местных механизмов нервной и гуморальной регуляции, микроциркуляции, в формировании физико‑химических сдвигов.

На начальном этапе воспаления в ткани (не только зоны первичной, но и вторичной альтерации) преобладают реакции катаболизма, затем — при развитии артериальной гиперемии и активации процессов пролиферации, — как правило, начинают доминировать анаболические реакции.

Биологический «смысл» изменений метаболизма заключается в энергетическом и пластическом обеспечении местных адаптивных реакций в очаге воспаления, направленных на локализацию, уничтожение и элиминацию флогогенного агента, а также на ликвидацию патогенных последствий его воздействия.

Ионы и вода

Для ионов и воды характерен трансмембранный дисбаланс ионов, увеличение внутриклеточного содержания Na+ и Ca2+ и внеклеточного содержания K+ и Mg2+, гипергидратация клеток и отёк ткани в очаге воспаления.

Расстройства обмена веществ сопровождаются существенными и закономерными физико‑химическими сдвигами в очаге воспаления.

Физико‑химические изменения

Ацидоз

Воспалительная реакция характеризуется увеличением [Н+] и, соответственно, снижением рН в клетках и межклеточной жидкости — развитием ацидоза.

Причина метаболического ацидоза — накопление в очаге воспаления избытка недоокисленных соединений.

Механизмы развития метаболического ацидоза

• Образование большого количества «кислых» продуктов изменённого метаболизма вследствие:

† активации гликолиза, что сопровождается накоплением избытка молочной и пировиноградной кислот

† усиления протеолиза и липолиза с накоплением аминокислот, ВЖК и КТ.

• Нарушение оттока из очага воспаления продуктов как нормального, так и нарушенного обмена веществ. Последнее особенно выражено в связи с замедлением оттока венозной крови и развитием стаза в очаге воспаления.

• «Истощение» щелочных буферных систем (бикарбонатной, фосфатной, белковой и других) клеток и межклеточной жидкости, которые на начальном этапе воспаления нейтрализуют избыток кислых соединений.

Особенности изменения [Н+] в очаге воспаления

• Чем острее протекает воспаление, тем более выражен ацидоз: из компенсированного он быстро трансформируется в некомпенсированный.

• Как правило, [Н+] наибольшая в зоне первичной альтерации, она меньше в прилегающей к ней зоне вторичной альтерации и постепенно снижается по направлению к неповреждённой ткани.

• В отдельных участках интенсивной деструкции и аутолиза тканей, где накапливаются восстановленные органические и неорганические соединения, продукты промежуточного белкового распада (аммиак и его производные), может развиваться более или менее выраженный преходящий алкалоз. Однако, в целом для очага воспаления характерен ацидоз.

Гиперосмия

В очаге воспаления в большей или меньшей мере повышается осмотическое давление.

Причины

• Повышенное ферментативное и неферментное разрушение макромолекул (гликогена, гликозаминогликанов, протеогликанов и других).

• Усиленный в условиях ацидоза гидролиз солей и соединений, содержащих неорганические вещества.

• Поступление осмотически активных соединений из повреждённых и разрушенных клеток.

Гиперонкия

Увеличение онкотического давления в воспалённой ткани — закономерный феномен.

Причины

• Увеличение концентрации белка в очаге воспаления в связи с усилением ферментативного и неферментного гидролиза пептидов.

• Повышение гидрофильности белковых мицелл и других коллоидов в результате изменения их конформации при взаимодействия с ионами.

• Выход белков (в основном — альбуминов) из крови в очаг воспаления в связи с повышением проницаемости стенок микрососудов.



Источник