Сиаловые кислоты и воспаление

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 января 2021; проверки требуют 2 правки.
Сиаловые кислоты (от др.-греч. σίαλον «слюна») – общее название N- и O-замещённых производных нейраминовой кислоты, моносахарида с девятиатомной углеродной цепью. Наиболее распространённого представителя этого класса – N-ацетилнейраминовую кислоту (НАНК, Neu5Ac) – также часто называют сиаловой кислотой. Широко распространены в тканях животных, однако встречаются также у растений, грибов и бактерий. Впервые были обнаружены в 1930-е годы Гуннаром Бликсом[sv], Эрнстом Кленком[de] и другими в качестве преобладающих продуктов мягкого кислотного гидролиза гликолипидов мозга и муцинов слюны, от чего и получили своё название[1]. К 1980-м годам были идентифицированы более 30 различных производных НАНК. Другой ряд сиаловых кислот включает в себя метаболиты 2-кето-3-деоксинононовой кислоты (Kdn); с их учётом общее число сиаловых кислот достигает 50[1].
Структура[править | править код]
Из-за влияния карбоксильной группы на кетозидную связь сиаловые кислоты неустойчивы, эта связь легко подвергается гидролитическому расщеплению.
Нумерация структуры сиаловой кислоты начинается с карбоксильного атома углерода. Конфигурация, в которой карбоксилат-анион находится в аксиальном положении, является α-аномером.
В растворе сиаловая кислота преимущественно находится в β-форме (более 90 %), а в состав гликанов входит α-аномер.
Разнообразие сиаловых кислот определяется, во-первых, природой и позицией замещения углевода, к которому гликозидной связью присоединён фрагмент сиаловой кислоты, а во-вторых, характером модификации заместителей при атомах углерода C-1, C-4, C-5, C-7, C-8 и C-9. Гликозидные связи создаются ферментами сиалилтрансферазами[en], чаще всего с позициями C-3 и C-6 остатков галактозы и C-6 N-ацетилгалактозамина[en][1].
Варьирование заместителей при атоме C-5 определяет строение четырёх ключевых сиаловых кислот: Neu5Ac (N-ацетил), Kdn (гидроксил), N-гликолилнейраминовой кислоты (Neu5Gc), N-(гидроксиацетил)), а также нейраминовой кислоты (Neu, аминогруппа). Карбоксильная группа при C-1 обычно депротонирована, однако может образовывать лактоны с соседними сахаридами, а также лактамы в случае Neu. Среди заместителей при остальных атомах углерода обычно встречаются O-метил, O-ацетил, O-сульфат, O-лактил, а также фосфатная группа. Встречаются также ненасыщенные и дегидрированные производные сиаловых кислот, наиболее распространённое среди которых – Neu2en5Ac (2-деокси-2,3-дидегидро-НАНК)[1].
Полимерные и олигомерные формы сиаловых кислот встречаются в гликопротеинах животных (в частности, в клетках мозга и рыбьей икры), характерны для некоторых патогенных бактерий[1]. Концентрация полисиаловых кислот в мозге значительно снижается при постнатальном развитии; повышение концентрации сопряжено с нейропластичностью[1].
Физико-химические свойства[править | править код]
Сиаловые кислоты – бесцветные кристаллические вещества, хорошо растворимые в воде, слабо растворимые в растворах спирта и эфира и нерастворимые в неполярных органических растворителях. Имеют низкие температуры плавления. При нагревании выше 130-160° C большинство сиаловых кислот разлагаются. Весьма неустойчивы: при хранении водных растворов наблюдается их распад. Разлагаются под действием минеральных и некоторых органических кислот, а также при взаимодействии с основаниями[2]. По своей природе сиаловые кислоты являются полифункциональными соединениями с ярко выраженной кислотностью (pKa = 2,6), образуют метиловые эфиры.
Специфические реакции[править | править код]
Сиаловые кислоты имеют ряд специфических реакций:
- прямая реакция Эрлиха;
- реакция Уоррена с тиобарбитуровой кислотой.
Первая реакция широко применяется при исследовании гликопротеинов, так как другие компоненты этих биополимеров в этих условиях не дают окрашенных соединений. Данная реакция основана на превращении сиаловых кислот в производные пиррола, которые дают окрашивание при взаимодействии 4-диметиламинобензальдегидом.
Вторая основана на образовании формилпировиноградной кислоты, которая даёт цветную реакцию при взаимодействии с тиобарбитуровой кислотой.
Методы обнаружения[править | править код]
Для идентификации сиаловых кислот применяется хроматография на бумаге, в тонком слое силикагеля, электрофорез на бумаге.
Распространение[править | править код]
Сиаловые кислоты широко распространены в природе. Встречаются в составе гликокаликса животной клетки (в том числе человека), клеточных оболочках бактерий, клеточных стенках растений, являются структурными компонентами гликопротеинов и гликолипопротеинов, входят в состав структурных компонентов олигосахаридов женского молока, простетической группы мукопротеина подчелюстной железы, ганглиозидов мозга, участвующих в проведении нервных импульсов, часто встречаются в составе спинномозговой жидкости (в свободном состоянии), секретов слюнных желез, слизей, в мембранах митохондрий, микросом[3].
Биосинтез[править | править код]
В бактериальных системах сиаловые кислоты синтезируются с помощью фермента альдолазы. Фермент в качестве субстрата использует производное маннозы, вставляя три атома углерода от молекулы пирувата в полученную структуру сиаловой кислоты. Альдолазы могут использоваться также для химико-ферментативного синтеза производных сиаловой кислоты[4].
Функции[править | править код]
Сиаловые кислоты представляют собой важный строительный блок гликанов и гликолипидов. Их типичное расположение – на концах N-гликанов, O-гликанов и ганглиозидов, но они также могут быть промежуточными звеньями полисахаридов (преимущественно бактериальных), а также формировать олиго- и полисиаловые кислоты[1]. Наличие сиаловых кислот на концах олигосахаридных цепей животных гликопротеинов обеспечивает возможность циркуляции последних в кровотоке, предотвращая захват их клетками печени. Входя в состав биополимеров животных клеток, сиаловые кислоты во многом определяют свойства клеточной поверхности. Находясь на невосстанавливающем конце олигосахаридных цепей гликолипидов и гликопротеинов, сиаловые кислоты маскируют антигенные детерминанты биополимера[5].
Сиаловые кислоты связывают селектин в организме человека и других организмах.
Играют значительную роль в патологических процессах: воспаления, иммунного ответа, канцерогенеза (некоторые из сиаловых кислот, например, N-ацетилнейраминовая кислота участвует в проникновении метастазов в кровеносные сосуды[6]), проникновения вирусов, бактерий и грибков в организм человека итд.
Метастатические клетки рака часто имеют высокую экспрессию сиаловой кислоты, которой богаты гликопротеины. Именно избыточная экспрессия сиаловой кислоты на поверхности создает отрицательный заряд, действующий на клеточные мембраны. Это создает отталкивание между здоровыми клетками (образуя, так называемые клетки оппозиции)[6] и помогает метастазам на поздних стадиях рака попадать в кровеносные сосуды.
В 1940-е годы было обнаружено, что сиаловая кислота является клеточным рецептором вирусов гриппа и разрушается под действием фермента, впоследствии названного нейраминидазой[1]. Широко используемые лекарственные средства против гриппа (осельтамивир и занамивир) являются аналогами сиаловой кислоты и мешают проникновению вируса в клетку путём ингибирования нейраминидазы.
Регионы, богатые сиаловыми кислотами, создают отрицательный заряд на поверхности клеток. Поскольку вода является полярной молекулой с частичным положительным зарядом на обоих атомах водорода, она притягивается к поверхности клеток и мембран. Это также способствует поглощению жидкости клетками.
Патология обмена сиаловых кислот[править | править код]
Патология обмена включает группу наследственных заболеваний – сиалидозов. Сиалидоз I типа или муколипидоз – наследственное (аутосомно-рецессивное) заболевание, вызванное накоплением сиаловых кислот в кровотоке, вследствие дефицита лизосомного фермента – нейраминидазы (сиалидазы)[7], который способствует выведению сиаловых кислот из организма.
См. также[править | править код]
- Сиалидоз
- Сиалогликопротеины[en]
- Ортомиксовирусы
Примечания[править | править код]
- ↑ 1 2 3 4 5 6 7 8 Varki, A. Chapter 14. Sialic Acids // Essentials of Glycobiology : [англ.] / A. Varki, R. Schauer. – 2nd Edition. – Cold Spring Harbor (NY) : Cold Spring Harbor Laboratory Press. – 784 p. – ISBN 978-087969770-9. – PMID 20301246.
- ↑ Кочетков Н.К. Химия углеводов. – М.: Химия, 1967. – 674 с.
- ↑ Сиаловая кислота
- ↑ Hai Yu, Harshal Chokhawala, Shengshu Huang, Xi Chen. One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural alities // Nature Protocols. – 2006. – Vol. 1. – P. 2485-2492. – doi:10.1038/nprot.2006.401. – PMID 17406495.
- ↑ Овчинников Ю.А. Биоорганическая химия. – М.: Просвещение, 1987. – 815 с.
- ↑ 1 2 Mark M. Fuster, Jeffrey D. Esko. The sweet and sour of cancer: Glycans as novel therapeutic targets // Nature Reviews Cancer. – 2005. – Vol. 5. – P. 526-542. – doi:10.1038/nrc1649. – PMID 16069816.
- ↑ James, William D.; Berger, Timothy G.; et al. Andrews’ Diseases of the Skin: clinical Dermatology (англ.). – Saunders Elsevier, 2006. – P. 538. – ISBN 0-7216-2921-0. (англ.)
Углеводы | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Общие: |
| ||||||||||||||
Геометрия |
| ||||||||||||||
Моносахариды |
| ||||||||||||||
Мультисахариды |
| ||||||||||||||
Производные углеводов |
|
Источник
СИАЛОВЫЕ КИСЛОТЫ – актированные производные нейраминовой кислоты, входят в состав гликопротеидов, гликолипидов (ганглиозидов), муцинов и других гликоконъюгатов. Биол. роль С. к. определяется их участием в формировании специфических свойств физиологически активных углеводсодержащих соединений. Содержание С. к. в крови является дополнительным диагностическим тестом при нек-рых воспалительных заболеваниях – артритах (см.), полиартритах (см.), ревматоидном артрите (см.) и др., характеризующим степень воспалительного процесса. Генетически обусловленная недостаточность фермента нейраминидазы (сиалидазы; КФ 3. 2. 1. 18) служит причиной возникновения наследственных болезней накопления сиалидозов. В неацилированном состоянии нейраминовая кислота (см.) является нестойким веществом и в природе не встречается.
Свободные С. к. в организме животных и человека обнаружены в очень незначительных количествах. Как правило, они входят в состав различных олигосахаридов (см.), гликолипидов (см.) – ганглиозидов (см.) и гликопротеидов (см.). Гликопротеиды, содержащие большое количество С. к., называют сиало-гликопротеидами. У бактерий обнаружен полимер одной из С. к.- N-ацетилнейраминовой к-ты – так наз. коломиновая к-та.
С. к. различают в зависимости от типа ацильных радикалов (обычно ацетил- или гликолил-), их числа и характера связи (N- или О-). С помощью хим. синтеза получены С. к., не встречающиеся в природе, напр, бензоил-, пропионил-, формил-, сукцинилнейраминовая к-ты и др.
Чистые С. к. представляют собой бесцветные кристаллы, легко растворимые в воде, ограниченно растворимые в метаноле и нерастворимые в эфире; они неустойчивы в растворах щелочей и к-т, при нагревании разрушаются с изменением окраски. С. к. являются сильными кислотами и восстанавливают жидкость Фелинга.
Биосинтез С. к. в организме животных и человека начинается с фосфорилирования (см.) М-ацетилманнозамина под действием одноименной киназы (см.). Фосфорилированный N-ацетилманнозамин и фосфоенол-пировиноградная к-та являются биосинтетическими предшественниками
С. к. Под действием специфической N-ацетилнейраминат-синтазы (КФ 4. 1. 3. 19) они превращаются в N-ацетилнейраминовую к-ту. Из нее путем прямого ферментативного гид-роксилирования образуется N-гли-колилнейраминовая к-та. Кроме кислорода, эта реакция требует присутствия аскорбиновой к-ты и ионов Fe2+. Донором аниона уксусной кислоты (см.) – ацетила – при образовании С. к. служит ацетил-КоА. Ферменты ацетил-КоА: N-ацетил- нейраминат – 4 – О-ацетилтрансфераза (КФ 2. 3. 1. 44) и ацетил-КоА: N-аце-тилнейраминат 7(или 8)-0-ацетил-трансферазы (КФ 2. 3. 1. 45) участвуют в образовании соответствующих С. к.- N- и О-диацетил- и N-ацетил-О-диацетилнейраминовой к-т. Установлено, что эти превращения могут происходить уже после включения N-ацетилнейраминовой к-ты в гликопротеиды. Присоединение С. к. к молекуле гликоконъюгата происходит после ее активирования цитидинмонофосфатом (ЦМФ). Образование ЦМФ-сиаловых к-т катализирует ацилнейраминат-цитидилилтрансфераза (ЦМФсиалат-синтаза; КФ 2. 7. 7. 43). Этот фермент неспецифичен в отношении разных С. к. Перенос С. к. от активированных ЦМФ С. к. осуществляется при участии специфических сиалилтрансфераз (КФ 2. 4. 99. 1).
N-ацетилнейраминовая и N-гли-колилнейраминовая к-ты расщепляются под действием альдолазы N-ацилнейраминовой к-ты (КФ 4. 1. 3. 3) на соответствующий N-ацил-маннозамин и пировиноградную к-ту. Диацилированные С. к. почти не расщепляются этим ферментом.
От молекул содержащих их веществ С. к. отщепляются под действием нейраминидазы. Время циркуляции в кровотоке нек-рых белков крови (церулоплазмина, о^-глобулина и др.) и нек-рых гормонов (хорионического гонадотропина, фолликулостимулирующего и лютеинизирую-щего гормонов и др.) после отщепления от их молекул С. к. резко сокращается. Асиалогликопротеиды имеют на конце углеводной цепи, как правило, галактозу (см.), что делает возможным их поглощение печенью, к-рое, в свою очередь, обеспечивается специфическими рецепторами, содержащими С. к. Потерю биол. активности нек-рыми гормонами после их десиалирования объясняют теперь именно их исчезновением из кровотока. Продолжительность циркуляции в кровотоке нек-рых клеток крови также уменьшается после удаления с их поверхности С. к. Предполагают, что процесс старения эритроцитов связан с уменьшением количества С. к. в их оболочке.
Установлено, что С. к. создают высокую плотность отрицательного заряда на молекулах гликопротеидов и муцинов и тем самым обусловливают вытянутую, палочковидную форму их молекул, благодаря к-рой секреты слизистых оболочек дыхательных путей, кишечника и половых путей, отличающиеся большим содержанием сиалогликопротеидов, обладают высокой вязкостью, что обеспечивает защиту слизистых оболочек от проникновения бактерий, а также от механических и хим. повреждений. С. к. в составе гликопротеидов секрета слизистых оболочек половых путей играют существенную роль в процессе оплодотворения (см.). Вязкость секрета в шейке матки снижается только во время овуляции, облегчая доступ сперматозоидам к яйцеклетке. С. к. являются важным компонентом блестящей зоны (zona pellucida) яйцеклетки млекопитающих: после удаления С. к. сперматозоиды не могут проникнуть внутрь яйцеклетки. С. к. в значительной степени определяют способность клеток к адгезии (см.). Предполагают, что С. к. маскируют остатки сахаров, являющихся антигенными детерминантами в гликопротеидах. Удаление С. к. из гликопротеидов или с поверхности клеток повышает их иммуногенность. Содержание С. к. в крови резко повышается при многих острых и хрон. воспалительных заболеваниях.
Избыточную экскрецию сиалоолигосахаридов с мочой наблюдают при сиалидозах – группе заболеваний, вызванных недостаточностью нейраминидазы (сиалидазы), фермента, отщепляющего концевые остатки С. к. от различных содержащих их веществ. Сиалидозы представляют собой наследственные болезни накопления, передающиеся по аутосомно-рецессивному типу наследования. Характерными клин, признаками сиалидозов являются миоклонические судороги, появление на глазном дне пятна типа «вишневой косточки», прогрессирующая слепота. Различают сиалидозы типа 1, клин, картина которых характеризуется отсутствием умственной отсталости и признаков дисморфизма, и сиалидозы типа 2, характеризующиеся умственной отсталостью и дисморфическими признаками, напоминающими дисморфизм при синдроме Гурлер (см. Гаргоилизм). Содержание отдельных сиалоолигосахаридов в моче больных сиалидозами превышает норму более чем в 100 раз. Выявление сиалоолигосахаридов в моче с помощью тонкослойной хроматографии (см.) используют для предварительной диагностики сиалидоза. Окончательный диагноз может быть поставлен только после установления недостаточности нейраминидазы в лейкоцитах и культуре кожных фибробластов.
Описаны также случаи сиалурии, когда у больного с мочой выделялось огромное количество С. к. (до 7 г в сутки) в виде свободной N-ацетил-еейраминовой к-ты.
Наиболее чувствительными и специфичными методами определения С. к. в биол. материале (сыворотке крови, синовиальной жидкости и др.) являются резорциновый метод Свеннерхольма и метод определения С. к. с тиобарбитуровой к-той.
При определении С. к. по методу Свеннерхольма к р-ру, содержащему С. к., добавляют резорцин, соляную к-ту, сульфат меди и выдерживают в течение 15 мин. на кипящей водяной бане. Интенсивность развивающейся синей окраски прямо пропорциональна содержанию €. к. в пробе и определяется фотометрированием с красным светофильтром (см. Фотометрия). Метод определения С. к. с тиобарбитуровой к-той основан на их окислении перйодатом натрия и определении интенсивности окраски, развивающейся в результате взаимодействия образовавшейся бета-формилпировиноградной к-ты с тиобарбитуровой к-той. Окрашенный р-р колориметрируют при 549 нм.
Библиография: Цветкова И. В. Нейраминовая кислота и ее значение в организме, Вопр. мед. хим.. т. 7, № 1, с. 1, 1961, библиогр.; Lowden J. A. a. O’Brien J. S. Sialidosis, a review of human neuraminidase deficiency, Amer. J. hum. Genet., v. 31, p. 1, 1979; Schauer R. Chemistry and biology of the acylneurami-nic acids, Angew. Chem., Bd 85, S. 128, 1973; Sharon N. Complex carbohydrates, Their chemistry, biosynthesis and s, Reading, 1975.
И. В. Цветкова.
Источник
Сиаловые кислоты (от др.-греч. σίαλον «слюна») – общее название N- и O-замещённых производных нейраминовой кислоты, моносахарида с девятиатомной углеродной цепью. Наиболее распространённого представителя этого класса – N-ацетилнейраминовую кислоту (НАНК, Neu5Ac) – также часто называют сиаловой кислотой. Широко распространены в тканях животных, однако встречаются также у растений, грибов и бактерий. Впервые были обнаружены в 1930-е годы Гуннаром Бликсом[sv], Эрнстом Кленком[de] и другими в качестве преобладающих продуктов мягкого кислотного гидролиза гликолипидов мозга и муцинов слюны, от чего и получили своё название[1]. К 1980-м годам были идентифицированы более 30 различных производных НАНК. Другой ряд сиаловых кислот включает в себя метаболиты 2-кето-3-деоксинононовой кислоты (Kdn); с их учётом общее число сиаловых кислот достигает 50[1].
Энциклопедичный YouTube
Теперь давайте поговорим о том, каким образом грипп вызывает так много негативных последствий в нашем организме, и почему мы чувствуем себя так плохо, когда болеем им. Начну с того, что изображу здесь вирус гриппа. И вирус гриппа имеет несколько особенностей, о которых нужно помнить. Здесь снаружи имеется небольшая оболочка, внутри которой находятся 8 фрагментов РНК. 8 кусочков РНК. Про эту РНК важно помнить, поскольку в человеческих клетках, в наших клетках – сейчас я нарисую одну такую клетку вот здесь… Итак, в наших клетках имеется, вместо РНК ДНК. Запомните это. И это наше ядро, а внутри нашего ядра имеется ДНК. Вот это наша с вами ДНК. Итак, у вируса имеется РНК, а у нас ДНК. А на поверхности человеческой клетки – давайте, отмечу здесь. Это человеческая клетка. Так вот, на поверхности её имеются так называемые сиаловые кислоты. Вот эти небольшие ответвления. Нарисую их больше, чем они есть на самом деле. Они не такие большие, наоборот, очень маленькие, и называются сиаловыми кислотами. И эта сиаловая кислота важна для понимания того, каким образом вирус гриппа проникает внутрь клетки и выходит из неё. Итак, как мы помним, на поверхности вируса гриппа имеется 2 белка. Сейчас я нарисую один из этих белков здесь, изображу его в форме руки. Итак, это маленькая рука, и этот белок называется гемагглютинином. Гемагглютинин. Ранее я обозначил его как Н белок, и вы можете называть его так, если хотите. Однако полное название его гемагглютинин. И функция этого гемагглютинина на самом деле, – связываться с сиаловой кислотой. Несложно запомнить, да? Поскольку H и H соединяются. И он связывается с сиаловой кислотой. Это очень важно, поскольку это первый этап при проникновении внутрь клетки. Теперь давайте посмотрим на другой белок на поверхности вот здесь – я изображу его в виде пары ножниц, поскольку он напоминает мне по форме ножницы. И носит название нейраминидаза. Запишем: нейраминидаза. И я собираюсь… собираюсь объяснить вам, чем он занимается, одну минуту. Расскажу вам вкратце о его функции. Итак, первый этап при проникновении внутрь клетки – это связывание гемагглютинина с сиаловой кислотой. Затем, происходит ещё несколько небольших действий на молекулярном уровне, однако они очень важные. Но я ограничусь пока этим проникновением внутрь. И после того, как вирус гриппа проник внутрь, эти сегменты РНК высвобождаются. И эти сегменты начинают прокладывать свой путь к клеточному ядру. Как только они проникли внутрь ядра, они располагаются в такой же зоне, которой является ДНК, и начинают выполнять важные функции. Фактически, они начинают управлять. Эти маленькие фрагменты РНК начинают создавать множество копий себя. И превращают клетку человека в фабрику. Превращают в фабрику. Это фабрика по производству мелких белков, вирусных белков, и вирусной ДНК. И после этого клетка уже никогда не будет нормально выполнять свои функции. Итак, человеческая клетка, разумеется, имеет определённый набор функций. Однако у неё не хватает ресурсов или времени, чтобы выполнить их, поскольку она полностью подчинена вирусной РНК. И вот что происходит, когда вирусная РНК фактически превратила её в свою фабрику. И всё что ей нужно, это воспроизводство самой себя. Давайте покажу, как это будет выглядеть. Вот это дочерняя клетка. Будем считать, что она проходит здесь. Сейчас освобожу немного места, чтобы нарисовать вам аккуратную и понятную схему. Тут у нас дочерняя клетка, а эти клетки пытаются проникнуть в человеческую клетку. Поскольку теперь они запакованы, они готовы двигаться, и как вы думаете куда? Они хотят найти свои собственные человеческие клетки, чтобы проникнуть в них, и продолжать процесс. Итак, вот здесь внизу у нас больше человеческих клеток. Здесь, давайте будем считать, одна человеческая клетка. Здесь новые мишени для этого вируса, и этот вирус собирается искать мишени и пытается проникнуть в них снова, используя свой гемагглютинин. Однако до того как он сможет это сделать, он разваливается, правда? Потому что он всё ещё связан с этой сиаловой кислотой. И вот здесь проходит нейраминидаза. Она фактически, отрезает сиаловую кислоту. Она работает как нож. И таким образом, если она может отрезать сиаловую кислоту, она может высвободиться. Итак, мы помним, что 2 белка, таких как гемагглютинин, связываются с сиаловой кислотой и проникают внутрь клетки. Здесь они проникают. А нейраминидаза отрезает сиаловую кислоту, и это очень важно для выхода из клетки. Однако мы всё ещё не ответили на вопрос, как вирус вызывает все перечисленные симптомы? Итак, клетки превращаются в фабрики, начинают гибнуть, или повреждаются. И всё их содержимое вытекает наружу. То есть всё это содержимое начинает вытекать из клетки. И это приводит к возникновению воспаления. Давайте я освобожу немного места. Если у вас имеется воспаление, давайте представим, что воспаление идёт в носу. Тогда мы говорим, что течёт из носа или заложен нос. И в случае, если воспаление происходит в клетке, то мы говорим, что что болит горло. То есть вам может быть больно. А если это происходит в лёгких, может возникнуть кашель. Многие из этих симптомов со стороны дыхательной системы – а вы помните, что имеется две категории симптомов – большинство из этих симптомов со стороны дыхательной системы – напишу сокращенно «дых. сист.» – все они могут объясняться воспалением, или, по крайней мере, частично объясняться им. Также есть общие симптомы. К ним относятся повышение температуры или слабость. А причиной их является то, что наша иммунная система фактически сходит с ума. Когда у вас грипп, то начинают привлекаться определённые химические вещества. Мы называем их цитокинами, и они высвобождаются. И они начинают привлекаться потому что в этой зоне у нас имеются вирусные частицы, поскольку эта зона инфицирована. И сильная иммунная система начинает формировать некоторые из этих симптомов. Она приводит к повышению температуры, появляется жар или озноб. А поскольку вся наша энергия ушла на отражение этого нападения, то вы испытываете утомление. Вы же боретесь с этим вирусом. Поэтому испытываете утомление, тратя силы, появляются боли в мышцах. А все остальные симптомы являются всего лишь результатом сильного иммунного ответа. Subtitles by the Amara.org
Содержание
- 1 Структура
- 2 Физико-химические свойства
- 2.1 Специфические реакции
- 2.2 Методы обнаружения
- 3 Распространение
- 4 Биосинтез
- 5 Функции
- 6 Патология обмена сиаловых кислот
- 7 См. также
- 8 Примечания
Структура
Из-за влияния карбоксильной группы на кетозидную связь сиаловые кислоты неустойчивы, эта связь легко подвергается гидролитическому расщеплению.
Нумерация структуры сиаловой кислоты начинается с карбоксильного атома углерода. Конфигурация, в которой карбоксилат-анион находится в аксиальном положении, является α-аномером.
В растворе сиаловая кислота преимущественно находится в β-форме (более 90 %), а в состав гликанов входит α-аномер.
Разнообразие сиаловых кислот определяется, во-первых, природой и позицией замещения углевода, к которому гликозидной связью присоединён фрагмент сиаловой кислоты, а во-вторых, характером модификации заместителей при атомах углерода C-1, C-4, C-5, C-7, C-8 и C-9. Гликозидные связи создаются ферментами сиалилтрансферазами[en], чаще всего с позициями C-3 и C-6 остатков галактозы и C-6 N-ацетилгалактозамина[en][1].
Варьирование заместителей при атоме C-5 определяет строение четырёх ключевых сиаловых кислот: Neu5Ac (N-ацетил), Kdn (гидроксил), N-гликолилнейраминовой кислоты (Neu5Gc), N-(гидроксиацетил)), а также нейраминовой кислоты (Neu, аминогруппа). Карбоксильная группа при C-1 обычно депротонирована, однако может образовывать лактоны с соседними сахаридами, а также лактамы в случае Neu. Среди заместителей при остальных атомах углерода обычно встречаются O-метил, O-ацетил, O-сульфат, O-лактил, а также фосфатная группа. Встречаются также ненасыщенные и дегидрированные производные сиаловых кислот, наиболее распространённое среди которых – Neu2en5Ac (2-деокси-2,3-дидегидро-НАНК)[1].
Полимерные и олигомерные формы сиаловых кислот встречаются в гликопротеинах животных (в частности, в клетках мозга и рыбьей икры), характерны для некоторых патогенных бактерий[1]. Концентрация полисиаловых кислот в мозге значительно снижается при постнатальном развитии?!; повышение концентрации сопряжено с нейропластичностью[1].
Физико-химические свойства
Сиаловые кислоты – бесцветные кристаллические вещества, хорошо растворимые в воде, слабо растворимые в растворах спирта и эфира и нерастворимые в неполярных органических растворителях. Имеют низкие температуры плавления. При нагревании выше 130-160° C большинство сиаловых кислот разлагаются. Весьма неустойчивы: при хранении водных растворов наблюдается их распад. Разлагаются под действием минеральных и некоторых органических кислот, а также при взаимодействии с основаниями[2]. По своей природе сиаловые кислоты являются полифункциональными соединениями с ярко выраженной кислотностью (pKa = 2,6), образуют метиловые эфиры.
Специфические реакции
Сиаловые кислоты имеют ряд специфических реакций:
- прямая реакция Эрлиха;
- реакция Уоррена с тиобарбитуровой кислотой.
Первая реакция широко применяется при исследовании гликопротеинов, так как другие компоненты этих биополимеров в этих условиях не дают окрашенных соединений. Данная реакция основана на превращении сиаловых кислот в производные пиррола, которые дают окрашивание при взаимодействии N-диметиламинобензальдегидом.
Вторая основана на образовании формилпировиноградной кислоты, которая даёт цветную реакцию при взаимодействии с тиобарбитуровой кислотой.
Методы обнаружения
Для идентификации сиаловых кислот применяется хроматография на бумаге, в тонком слое силикагеля, электрофорез на бумаге.
Распространение
Сиаловые кислоты широко распространены в природе. Встречаются в составе гликокаликса животной клетки (в том числе человека), клеточных оболочках бактерий, клеточной стенок растений, являются структурными компонентами гликопротеинов и гликолипопротеинов, входят в состав структурных компонентов олигосахаридов женского молока, простетической группы мукопротеина подчелюстной железы, ганглиозидов мозга участвующих в проведении нервных импульсов, часто встречаются в составе спинномозговой жидкости (в свободном состоянии), секретов слюнных желез, слизей, в мембранах, митохондрий, микросом[3].
Биосинтез
В бактериальных системах сиаловые кислоты синтезируются с помощью фермента альдолазы. Фермент в качестве субстрата использует производное маннозы, вставляя три атома углерода от молекулы пирувата в полученную структуру сиаловой кислоты. Альдолазы могут использоваться также для химико-ферментативного синтеза производных сиаловой кислоты[4].
Функции
Сиаловые кислоты представляют собой важный строительный блок гликанов и гликолипидов. Их типичное расположение – на концах N-гликанов, O-гликанов и ганглиозидов, но они также могут быть промежуточными звеньями полисахаридов (преимущественно бактериальных), а также формировать олиго- и полисиаловые кислоты[1]. Наличие сиаловых кислот на концах олигосахаридных цепей животных гликопротеинов обеспечивает возможность циркуляции последних в кровотоке, предотвращая захват их клетками печени. Входя в состав биополимеров животных клеток, сиаловые кислоты во многом определяют свойства клеточной поверхности. Находясь на невосстанавливаюшем конце олигосахаридных цепей гликолипидов и гликопротеинов, сиаловые кислоты маскируют антигенные детерминанты биополимера[5].
Сиаловые кислоты связывают селектин в организме человека и других организмах.
Играют значительную роль в патологических процессах: воспаления, иммунного ответа, канцерогенеза (некоторые из сиаловых кислот, например, N-ацетилнейраминовая кислота участвует в проникновении метастазов в кровеносные сосуды[6]), проникновения вирусов, бактерий и грибков в организм человека итд.
Метастатические клетки рака часто имеют высокую экспрессию сиаловой кислоты, которой богаты гликопротеины. Именно избыточная экспрессия сиаловой кислоты на поверхности создает отрицательный заряд, действующий на клеточные мембраны. Это создает отталкивание между здоровыми клетками (образуя, так называемые клетки оппозиции)[6] и помогает метастазам на поздних стадиях рака попадать в кровеносные сосуды.
В 1940-е годы было обнаружено, что сиаловая кислота является клеточным рецептором вирусов гриппа и разрушается под действием фермента, впоследствии названного нейраминидазой[1]. Широко используемые лекарственные средства против гриппа (осельтамивир и занамивир) являются аналогами сиаловой кислоты и мешают проникновению вируса в клетку путём ингибирования нейраминидазы.
Регионы, богатые сиаловыми кислотами, создают отрицательный заряд на поверхности клеток. Поскольку вода является полярной молекулой с частичным положительным зарядом на обоих атомах водорода, она притягивается к поверхности клеток и мембран. Это также способствует поглощению жидкости клетками.
Патология обмена сиаловых кислот
Патология обмена включает группу наследственных заболеваний – сиалидозов. Сиалидоз I типа или муколипидоз – наследственное (аутосомно-рецессивное) заболевание, вызванное накоплением сиаловых кислот в кровотоке, вследствие дефицита лизосомного фермента – нейраминидазы (сиалидазы)[7], который способствует выведению сиаловых кислот из организма.
См. также
- Сиалидоз
- Сиалогликопротеины[en]
- Ортомиксовирусы
Примечания
- ↑ 1 2 3 4 5 6 7 8 Varki, A. Chapter 14. Sialic Acids // Essentials of Glycobiology : [англ.] / A. Varki, R. Schauer. – 2nd Edition. – Cold Spring Harbor (NY) : Cold Spring Harbor Laboratory Press. – 784 p. – ISBN 978-087969770-9. – PMID 20301246.
- ↑ Кочетков Н.К. Химия углеводов. – М.: Химия, 1967. – 674 с.
- ↑ Сиаловая кислота
- ↑ Hai Yu, Harshal Chokhawala, Shengshu Huang, Xi Chen. One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural alities // Nature Protocols. – 2006. – Vol. 1. – P. 2485-2492. – DOI:10.1038/nprot.2006.401. – PMID 17406495.
- ↑ Овчинников Ю.А. Биоорганическая химия. – М.: Просвещение, 1987. – 815 с.
- ↑ 1 2 Mark M. Fuster, Jeffrey D. Esko. The sweet and sour of cancer: Glycans as novel therapeutic targets // Nature Reviews Cancer. – 2005. – Vol. 5. – P. 526-542. – DOI:10.1038/nrc1649. – PMID 16069816.
- ↑ James, William D.; Berger, Timothy G.; et al. Andrews’ Diseases of the Skin: clinical Dermatology. – Saunders Elsevier, 2006. – P. 538. – ISBN 0-7216-2921-0. (англ.)
Углеводы | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Общие: |
| ||||||||||||||
Геометрия |
| ||||||||||||||
Моносахариды |
| ||||||||||||||
Мультисахариды |
|