В очаге воспаления осмотическое давление

Причинами гиперосмии являются:– повышенное ферментативное и неферментное разрушение макромолекул (гликогена, гликозаминогликанов, протеогликанов и других); – усиленный в условиях ацидоза гидролиз солей и соединений, содержащих неорганические вещества; – поступление осмотически активных соединений из повреждённых и разрушенных клеток.
Гиперосмия обусловливает:–гипергидратацию в очаге воспаления; – повышение проницаемости сосудистых стенок; – стимуляцию эмиграции в зону воспаления лейкоцитов; – изменение тонуса стенок сосудов и кровообращения ; – формирование чувства боли.
Гиперонкия
Увеличение онкотического давления в воспалённой ткани – закономерный феномен.
Причинами гиперонкии являются: –увеличение концентрации белка в очаге воспаления в связи с усилением ферментативного и неферментного гидролиза пептидов; – повышение гидрофильности белковых мицелл и других коллоидов в результате изменения их конформации при взаимодействия с ионами; – выход белков (в основном — альбуминов) из крови в очаг воспаления в связи с повышением проницаемости стенок микрососудов.
Основное последствиегиперонкии в очаге воспаления это развитие отёка.
Поверхностный заряд и электрические потенциалы клеток
Альтерация тканей при воспалении ведёт к изменению (как правило —снижению) их поверхностного заряда, а также – мембранных потенциалов возбудимых клеток.
Причинынарушений заряда и потенциалов мембран клеток:–повреждение клеточных мембран, –расстройства энергообеспечения трансмембранного переноса ионов, –ионный баланс во внеклеточной жидкости.
Основные последствияотклонения мембранных потенциалов клеток в очаге воспаления: – изменения порога возбудимости клеток; – колебание чувствительности клеток к действию БАВ (цитокинов, гормонов, нейромедиаторов и других); – потенцирование миграции фагоцитов за счёт электрокинеза (см. рис. 6–20); – стимуляция кооперации клеток в связи со снижением величины отрицательного поверхностного их заряда, нейтрализацией его или даже перезарядкой (у повреждённых и погибших клеток внешняя поверхность цитолеммы заряжена положительно в связи с избытком на ней К+, Н+ и др. катионов).
Поверхностное натяжение мембран клеток
Для очага воспаления характерно уменьшение поверхностного натяжения клеточных мембран.
Основная причина этого– значительное увеличение концентрации в очаге воспаления поверхностноактивных веществ (фосфолипидов, ВЖК, K+, Ca2+ и некоторых других).
Основными последствиямиуменьшения поверхностного натяжения клеточных мембран при воспалении являются: – облегчение подвижности лейкоцитов (уменьшение поверхностного натяжения плазмолеммы способствует образованию псевдоподий); – потенцирование процесса адгезии фагоцитов к объекту фагоцитоза; – облегчение контакта фагоцитов и лимфоцитов при развитии реакций иммунитета и аллергии.
Коллоидное состояние цитозоля и межклеточного вещества
Изменения коллоидного состояния цитозоля и межклеточного вещества выявляются уже на начальном этапе воспаления.
Причина этого– накопление избытка Н+, K+, Na+, жирных кислот, пептидов, аминокислот, других метаболитов и БАВ (наряду с изменением степени гидратации цитоплазмы) приводит к облегчению переходов цитозоля: «гель – золь». В наибольшей степени такая трансформация характерна для фагоцитов.
Основные механизмы изменения коллоидного состоянияв очаге воспаления: – колебание степени полимеризации макромолекул (гликозаминогликанов, белков, протеогликанов и других); – фазовые переходы состояния микрофиламентов интерстиция. Переход цитозоля в состояние геля происходит при образовании из нитей F–актина упорядоченной структуры (актиновая решётка). Такая структура формируется при перекрестном соединении нитей актина с участием актинсвязывающих белков и при низкой концентрации Ca2+. При увеличении в цитозоле содержания Ca2+ процесс формирования актиновой решётки подавляется, цитоплазма приобретает состояние золя.
Главные последствияизменений коллоидного состояния цитозоля и интерстиция заключается в: – изменении тканевой проницаемости (в основном –стенок микрососудов) и – потенцировании процесса миграции лейкоцитов к объекту фагоцитоза.
МедиаторЫ ВОСПАЛЕНИЯ
Образование и реализация эффектов БАВ – одно из ключевых звеньев воспаления. БАВ обеспечивают закономерный характер развития воспаления, формирование его общих и местных проявлений, а также исходы воспаления. Именно поэтому БАВ нередко именуют как «пусковые факторы», «организаторы», «внутренний двигатель», «мотор» воспалительной реакции, «медиаторы воспаления».
Ы ВЁРСТКА. Таблица: НЕ РВАТЬ, НЕ ПЕРЕМЕЩАТЬ
МЕДИАТОРЫ ВОСПАЛЕНИЯ — | ||
• БАВ, образующиеся при воспалении, | ||
• обеспечивающие закономерный характер его развития и исходов, | ||
• формирование его местных и общих признаков | ||
Все медиаторы воспаления и их неактивные предшественники образуются в клетках организма. Но их подразделяют на клеточные и плазменные (рис. 6–8).
Ы ВЁРСТКА вставить файл «ПФ Рис 06 08 Виды медиаторов воспаления по их происхождению»
Рис.6–8.Виды медиаторов воспаления.
Клеточные медиаторы высвобождаются в очаге воспаления уже в активированном состоянии непосредственно из клеток, в которых они синтезировались и накопились.
Плазменные медиаторы образуются в клетках и выделяются в межклеточную жидкость, лимфу и кровь, но в не активном состоянии, а в виде предшественников.Эти вещества активируются под действием различных промоторов преимущественно в плазме крови. Они становятся физиологически дееспособными и поступают в ткани.
Предложено несколько классификаций групп медиаторов воспаления. Все они содержат в качестве классифицирующих несколько критериев. Рассматриваемые далее медиаторы воспаления подразделены на группы и подгруппы в соответствии со сложившимся на момент написания учебника представлениями. Некоторые пояснения приводятся в тексте этого раздела, а также в статьях «Цитокины», «Хемокины», «Факторы», «Интерлейкины», «Интерфероны», «Лейкоциты», «Макрофаги», «Тромбоциты» (см. «Справочник терминов» на компакт-диске).
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Источник
Причинами гиперосмии являются:– повышенное ферментативное и неферментное разрушение макромолекул (гликогена, гликозаминогликанов, протеогликанов и других); – усиленный в условиях ацидоза гидролиз солей и соединений, содержащих неорганические вещества; – поступление осмотически активных соединений из повреждённых и разрушенных клеток.
Гиперосмия обусловливает:–гипергидратацию в очаге воспаления; – повышение проницаемости сосудистых стенок; – стимуляцию эмиграции в зону воспаления лейкоцитов; – изменение тонуса стенок сосудов и кровообращения ; – формирование чувства боли.
Гиперонкия
Увеличение онкотического давления в воспалённой ткани – закономерный феномен.
Причинами гиперонкии являются: –увеличение концентрации белка в очаге воспаления в связи с усилением ферментативного и неферментного гидролиза пептидов; – повышение гидрофильности белковых мицелл и других коллоидов в результате изменения их конформации при взаимодействия с ионами; – выход белков (в основном — альбуминов) из крови в очаг воспаления в связи с повышением проницаемости стенок микрососудов.
Основное последствиегиперонкии в очаге воспаления это развитие отёка.
Поверхностный заряд и электрические потенциалы клеток
Альтерация тканей при воспалении ведёт к изменению (как правило —снижению) их поверхностного заряда, а также – мембранных потенциалов возбудимых клеток.
Причинынарушений заряда и потенциалов мембран клеток:–повреждение клеточных мембран, –расстройства энергообеспечения трансмембранного переноса ионов, –ионный баланс во внеклеточной жидкости.
Основные последствияотклонения мембранных потенциалов клеток в очаге воспаления: – изменения порога возбудимости клеток; – колебание чувствительности клеток к действию БАВ (цитокинов, гормонов, нейромедиаторов и других); – потенцирование миграции фагоцитов за счёт электрокинеза (см. рис. 6–20); – стимуляция кооперации клеток в связи со снижением величины отрицательного поверхностного их заряда, нейтрализацией его или даже перезарядкой (у повреждённых и погибших клеток внешняя поверхность цитолеммы заряжена положительно в связи с избытком на ней К+, Н+ и др. катионов).
Поверхностное натяжение мембран клеток
Для очага воспаления характерно уменьшение поверхностного натяжения клеточных мембран.
Основная причина этого– значительное увеличение концентрации в очаге воспаления поверхностноактивных веществ (фосфолипидов, ВЖК, K+, Ca2+ и некоторых других).
Основными последствиямиуменьшения поверхностного натяжения клеточных мембран при воспалении являются: – облегчение подвижности лейкоцитов (уменьшение поверхностного натяжения плазмолеммы способствует образованию псевдоподий); – потенцирование процесса адгезии фагоцитов к объекту фагоцитоза; – облегчение контакта фагоцитов и лимфоцитов при развитии реакций иммунитета и аллергии.
Коллоидное состояние цитозоля и межклеточного вещества
Изменения коллоидного состояния цитозоля и межклеточного вещества выявляются уже на начальном этапе воспаления.
Причина этого– накопление избытка Н+, K+, Na+, жирных кислот, пептидов, аминокислот, других метаболитов и БАВ (наряду с изменением степени гидратации цитоплазмы) приводит к облегчению переходов цитозоля: «гель – золь». В наибольшей степени такая трансформация характерна для фагоцитов.
Основные механизмы изменения коллоидного состоянияв очаге воспаления: – колебание степени полимеризации макромолекул (гликозаминогликанов, белков, протеогликанов и других); – фазовые переходы состояния микрофиламентов интерстиция. Переход цитозоля в состояние геля происходит при образовании из нитей F–актина упорядоченной структуры (актиновая решётка). Такая структура формируется при перекрестном соединении нитей актина с участием актинсвязывающих белков и при низкой концентрации Ca2+. При увеличении в цитозоле содержания Ca2+ процесс формирования актиновой решётки подавляется, цитоплазма приобретает состояние золя.
Главные последствияизменений коллоидного состояния цитозоля и интерстиция заключается в: – изменении тканевой проницаемости (в основном –стенок микрососудов) и – потенцировании процесса миграции лейкоцитов к объекту фагоцитоза.
МедиаторЫ ВОСПАЛЕНИЯ
Образование и реализация эффектов БАВ – одно из ключевых звеньев воспаления. БАВ обеспечивают закономерный характер развития воспаления, формирование его общих и местных проявлений, а также исходы воспаления. Именно поэтому БАВ нередко именуют как «пусковые факторы», «организаторы», «внутренний двигатель», «мотор» воспалительной реакции, «медиаторы воспаления».
Ы ВЁРСТКА. Таблица: НЕ РВАТЬ, НЕ ПЕРЕМЕЩАТЬ
МЕДИАТОРЫ ВОСПАЛЕНИЯ — | ||
• БАВ, образующиеся при воспалении, | ||
• обеспечивающие закономерный характер его развития и исходов, | ||
• формирование его местных и общих признаков | ||
Все медиаторы воспаления и их неактивные предшественники образуются в клетках организма. Но их подразделяют на клеточные и плазменные (рис. 6–8).
Ы ВЁРСТКА вставить файл «ПФ Рис 06 08 Виды медиаторов воспаления по их происхождению»
Рис.6–8.Виды медиаторов воспаления.
Клеточные медиаторы высвобождаются в очаге воспаления уже в активированном состоянии непосредственно из клеток, в которых они синтезировались и накопились.
Плазменные медиаторы образуются в клетках и выделяются в межклеточную жидкость, лимфу и кровь, но в не активном состоянии, а в виде предшественников.Эти вещества активируются под действием различных промоторов преимущественно в плазме крови. Они становятся физиологически дееспособными и поступают в ткани.
Предложено несколько классификаций групп медиаторов воспаления. Все они содержат в качестве классифицирующих несколько критериев. Рассматриваемые далее медиаторы воспаления подразделены на группы и подгруппы в соответствии со сложившимся на момент написания учебника представлениями. Некоторые пояснения приводятся в тексте этого раздела, а также в статьях «Цитокины», «Хемокины», «Факторы», «Интерлейкины», «Интерфероны», «Лейкоциты», «Макрофаги», «Тромбоциты» (см. «Справочник терминов» на компакт-диске).
Источник
3.7. Особенности нарушения обмена веществ в очаге воспаления
Развитие альтерации, сосудистых изменений в зоне воспаления закономерно сочетается с типовыми расстройствами метаболизма. Прежде всего следует отметить резкое увеличение обмена веществ на стадии артериальной гиперемии в связи с усилением оксигенации, повышением активности ферментов гликолиза и аэробного окисления. В эксперименте было показано, что потребление кислорода при этом повышается на 30-35%. Одновременно происходит возрастание кровотока в системе микроциркуляции, что также способствует улучшению трофики тканей в зоне артериальной гиперемии и повышению температуры в очаге воспаления. Однако это длится недолго – на протяжении 2-3 часов в центральных участках воспалительного очага, а по периферии – несколько дольше.
Последовательная смена артериальной гиперемии венозной в зоне воспаления приводит к резкому снижению напряжения кислорода со 100-110 мм рт. ст. до 10-15 мм рт. ст., что сопровождается подавлением активности синтетических реакций в клетках поврежденной ткани, активацией процессов липопероксидации. Необходимо отметить, что нарушение обменных процессов является не только следствием дефицита кислорода. Так, в очаге острого воспаления происходят набухание митохондрий различных клеток, разобщение аэробного окисления и сопряженного с ним окислительного фосфорилирования. При этом активируется гликолиз, накапливаются молочная, яблочная, янтарная, a-кетоглутаровая кислоты, недоокисленные продукты липолиза и протеолиза (жирные кислоты, полипептиды, аминокислоты, кетоновые тела).
Избыточное накопление кислых метаболитов лежит в основе развития в зоне острого воспаления вначале компенсированного, а затем декомпенсированного метаболического ацидоза. Причем, чем интенсивнее выражено воспаление, тем более глубокими оказываются сдвиги кислотно-основного состояния в очаге альтерации. Так, при остром абсцессе рН гнойного экссудата может снизиться до 5, 0.
Наряду с повышением кислотности в зоне воспаления возрастает онкотическое и осмотическое давление в тканях. Это, в определенной мере, является результатом катаболических процессов – крупные молекулы расщепляются на более мелкие, их концентрация нарастает. Наблюдаются деполимеризация белково-гликозаминогликановых комплексов, распад белков, жиров, углеводов и накопление продуктов распада: свободных аминокислот, уроновых кислот, аминосахаров, полипептидов, низкомолекулярных полисахаридов. Катаболические процессы затрагивают и соединительную ткань, что приводит к дезорганизации околокапиллярного соединительнотканного скелета, и таким образом потенцируются расстройства микроциркуляции в зоне воспаления.
Повышение осмотического давления в очаге воспаления обусловлено выходом из поврежденных клеток ионов Nа+, К+, Са2+, макромолекулярных анионов, усиленной диссоциацией солей вследствие ацидоза ткани, а также нарушением выведения осмолей из очага воспаления на стадии венозной гиперемии и стаза. Так, в гнойном экссудате концентрация ионов К может достигать 100-200 мг/%, тогда как в нормальных тканях она не превышает 20 мг/%. Повышение онкоосмотического давления в очаге воспаления способствует экссудации и развитию местного отека.
Характеризуя состояние энергетического обеспечения клеток в зоне острого воспаления, следует отметить, что активация окислительно-восстановительных реакций на стадии артериальной гиперемии сопровождается и усилением синтеза макроэргических соединений и, соответственно, активацией различных энергозависимых реакций в клетках. Между тем на стадии венозной гиперемии в связи с развитием локального метаболического ацидоза, набухания митохондрий, разобщения процессов окислительного фосфорилирования и дыхания уровень макроэргических соединений в клетках снижается. Общеизвестен факт, что энергетический выход при полном окислении одной молекулы глюкозы составляет 36 молекул АТФ, в то время как в процессе гликолиза на одну молекулу глюкозы приходится лишь образование 4 молекул АТФ («чистый» энергетический выход составляет 2 молекулы АТФ).
В условиях дефицита кислорода, прогрессирующего в фазе венозной гиперемии и стаза, увеличивается содержание АДФ, АМФ, неорганического фосфата в клетках. В то же время избыточные концентрации АДФ в клетках обеспечивают выраженную активацию фермента фосфофруктокиназы, которая лимитирует реакцию, определяющую общую скорость гликолиза, а именно фосфорилирование фруктозо-6-фосфата с образованием фруктозо-1, 6-дифосфата. При высоком уровне оксигенации тканей в зоне артериальной гиперемии, когда увеличивается концентрация АТФ, активность фосфофруктокиназы заметно снижается, подавляется и интенсивность гликолитических реакций.
Итак, на фоне прогрессирующей гипоксии, свойственной венозной гиперемии и стазу, возникает дополнительная стимуляция процессов гликолиза, еще больше нарастает концентрация водородных ионов, формируется порочный круг. Однако, если поместить альтерированную ткань в зону чистого кислорода, возникает прямой эффект Пастера, то есть подавление гликолиза дыханием, начинается интенсивное потребление кислорода тканями. Это связано с тем, что в митохондриях скорость переноса электронов и скорость образования АТФ определяются, в первую очередь, концентрацией АДФ и фосфата, которые и являются активаторами дыхания. Этот феномен, то есть изменение скорости дыхания в соответствии со сдвигами концентрации АДФ, носит название дыхательного, или акцепторного контроля. Итак, АДФ и фосфат служат важнейшими внутриклеточными регуляторами энергетического обеспечения клеток. Этот механизм регуляции сохраняется и в зоне воспаления.
Одновременно с катаболическими процессами по периферии поврежденной ткани активируются анаболические процессы. Они определяются уже на ранних этапах воспалительного процесса, но выражены еще слабо. На поздних стадиях воспаления возрастает синтез ДНК и РНК в клетках, повышается активность клеточных ферментов, активируются процессы окисления и окислительного фосфорилирования, увеличивается выход макроэргов.
В очаге воспаления накапливаются высокоактивные фибробласты, гистиоциты, гранулоциты, мононуклеары, обеспечивающие очищение зоны альтерации и выделяющие биологически активные вещества, стимулирующие размножение клеточных и соединительнотканных элементов в очаге воспаления.
Источник